ALGUNOS EFECTOS DE LA BATRACOTOXINA SOBRE LAS ELECTROPLACAS DE LA ANGUILA ELECTRICA Y SU ANTAGONISMO CON ANESTESICOS LOCALES

Eva Bartels de Bernal¹, María Isabel Llano¹ y Edgar Díaz²

EXTRACTO

La batracotoxina, el veneno de la rana del Chocó, se ha ensayado en la preparación de la electroplaca de la angula eléctrica registrando los potenciales de acción y de reposo con, microelectrodos intracelulares. Se encuentra que la batracotoxina despo- liza y aumenta la duración del potencial de acción solamente cuando se estimula la célula repetidamente, es decir, cuando los canales de sodio están abiertos.

La tetrodotoxina, algunos anestésicos locales, y la defenhidramina, antagonizan la acción de la batracotoxina. Se discute la naturaleza de este antagó- nismo.

INTRODUCCION

La batracotoxina, substancia obtenida de Phylllobates aurotaenias, rana del Chocó, es el veneno no protéico más potente conocido en la naturaleza¹. Su mecanismo de acción fue estudiado en el corazón², músculo³, ⁴ y nervio⁵, ⁶ de varios animales, encontrándose que produce un aumento en la permeabilidad de la membrana celular al ión sodio. De tales investigaciones se sabe que esta acción es inhibida por la tetrodotoxina un bloqueador específico de los canales de sodio de la membrana conductiva⁷ y por la procaina, un anestésico local.

En este artículo se presentan resultados preliminares sobre la acción de la batracotoxina y su antagonismo con algunos anestésicos locales y la defenhidramina (benadriilo), en la preparación de la electroplaca de la angula eléctrica.

La angula eléctrica (Electrophorus electricus) se encuentra únicamente en la Amazonia y Orinoquia y es la herramienta ideal para estudiar bioelectricidad. Dos terceras partes de su cuerpo son órganos eléctricos especializados para generar bioelectricidad. Las angulas crecen hasta una longitud de 3 a 4 metros y pueden generar corrientes eléctricas de 600 voltios y 1 amperio. Los órganos eléctricos, derivados filogenéticamente del tejido muscular, tienen todas las propiedades de los músculos, pero han perdido la habilidad de contraerse. Las células eléctricas, “electroplacas”, son muy grandes: 1.5 cm de longitud por 0.5 cm de ancho. Cada célula tiene un gran número de sinapsis, 50.000 a 40.000, con las mismas propiedades farmacológicas que la placa terminal del músculo esquelético de ranas y mamíferos. Debido a la especialización, los órganos eléctricos tienen una concentración alta de acetilcolinesterasa, recep-

Gracias a la angula eléctrica se han aislado y purificado la acetilcolinesterasa⁹ y el receptor nicotínico¹⁰, ¹¹ en cantidades suficientes para un estudio in vitro. Sin embargo, el conocimiento sobre otras proteínas unidas a membranas conductivas, como algunas que controlan el flujo de iones, es limitado. Se espera que con el estudio de la toxina de la rana del Chocó en su acción sobre la electroplaca, se puedan obtener más informes sobre las reacciones químicas que ocurren en la membrana conductiva. Colombia es el sitio apropiado para estos estudios porque en ella se encuentran las ranas y las angulas eléctricas.

METODOS

Las células se obtienen según las técnicas desarrolladas por Schoffeniels y Nachmansohn¹² y Schoffeniels¹³; de la cola de la angula se corta una porción (más o menos 3 cm de longitud), de la cual se diseca una serie de células que se fijan con hílos a un marco en una caja de lucina. Con la ayuda de un microscopio se aislán las células individuales, seccionando en los sitios marcados con líneas interrumpidas, como se observa en la Figura 1. La célula así aislada se coloca entre 2 bloques de lucina (Figura 2) sobre una ventana que separa en 2 regiones la solución que baña la célula. La solución se puede cambiar en ambos lados inde-

Figura 1. Modelo de una serie de 3 electroplacas: La cara incinerada de la célula mira hacia la parte posterior de la angula. El lado sin inervación tiene muchas circunvoluciones de manera que el espesor de la célula varía entre 150 u y 1 mm.

1. Departamento de Ciencias Fisiológicas, Sección de Farmacología y Toxicología, Facultad de Medicina, Universidad del Valle, Cali.
2. Departamento de Física, Universidad del Valle, Cali.
Figura 2. Modelo de la cámara en la cual se coloca la electrolítica aislada: Se pone la celda sobre una ventana y se fija la misma con 2 hilos de algodón.

pendientemente. Solo una cara de la celda tiene innervación y conduce impulsos nerviosos. Los potenciales de reposo se miden con microelectrodos intracelulares llenos con KCl 3M y un registrador papel “Varian”. Como la pluma de este aparato no tiene la rapidez suficiente para seguir por completo los potenciales de acción, entonces los microelectrodos van a un osciloscopio “Tektronix”. Las drogas se disuelven en salina fisiológica, cuya composición final en mM/ml es: NaCl 188, KCl 5, CaCl₂ 2, MgCl₂ 2, NaH₂PO₄ 0.3, NaHPO₄ 1.2, Glucosa 10. El pH se ajusta a 7.2. La temperatura del medio ambiente oscila alrededor de 25°C.

La batracotoxina fue obsequiada por el Dr. John Daly de los Institutos Nacionales de Salud (NIH) de Estados Unidos, Bethesda.

RESULTADOS

La Figura 3 muestra un experimento típico de la acción de la batracotoxina sobre el potencial de reposo. Primero se aplica carbamilcolina para poner a prueba la respuesta despolarizante de la celda. Después de la recuperación del potencial de reposo en solución fisiológica, se aplica batracotoxina 5 x 10⁻⁸ M por 25 minutos y 1 x 10⁻⁷ M por 8 minutos y no se observan cambios en el potencial de reposo ni en el de acción. Pero, si durante varios minutos, ha precedido un período de estimulación supraumbral a una frecuencia de 1 por seg., se produce una despolarización sostenida del tipo todo o nada, que lleve al potencial de reposo a un valor entre 0 y 10 mV, y que es independiente de la concentración de batracotoxina.

Previamente, durante el período de estimulación, se observa la prolongación progresiva del potencial de acción, una despolarización residual creciente (Figura 4) y por último su bloqueo. A veces se aumenta la duración del potencial de acción hasta varios segundos, mientras que la duración normal es de 2 a 4 mseg. La despolarización debida a la batracotoxina no se puede revertir con lavados de solución fisiológica o con una solución de d-tubocuramina 1 x 10⁻⁴ M. Tampoco se inhibe esta despolarización cuando se aplica batracotoxina en presencia de curare. El número de los estímulos necesarios para provocar la despolarización, depende de la concentración de la batracotoxina y del estado metabólico de la celda. Es decir, una célula con un potencial de acción grande se despolariza más rápido y con menos estímulos que una célula con un potencial de acción pequeño. No hay efectos cuando la batracotoxina se aplica por el lado de la celda sin innervación.

La Figura 5 muestra el antagonismo entre la batracotoxina y la tetrototoxina. La tetrototoxina, un inhibidor específico del flujo de sodio en membranas conductivas, no tiene acción sobre la sinapsis. Se puede ver como la presencia de tetrototoxina en concentraciones que no bloquean el potencial de acción, previene el aumento en su duración y
Figura 4. Acción de la batracotoxina sobre el potencial de acción: Potenciales de acción provocados por estimulación continua (1/seg). La duración de los potenciales se aumenta con cada estímulo. Los potenciales de acción están superimpuestos, el último potencial tiene una duración de 14 mseg. Calibración: vertical 33 mV, horizontal 2 mseg.

la despoliarización causadas por la batracotoxina. Sólo cuando se lava la célula con solución fisiológica se observa una despoliarización inmediata que se revierte por completo en unos 10 minutos con una nueva aplicación de tetrodotoxina 3×10^{-6} M. Al lavar con solución fisiológica se despoliaiza la célula de nuevo, pero con una tasa de cambio inferior a la de la primera despoliarización. La tetrodotoxina cierra los canales de sodio y se restablece el potencial de reposo del comienzo por acción del transporte activo, pues la célula no se repolaraiza cuando se aplica tetrodotoxina en presencia de ouabain. La concentración de tetrodotoxina necesaria para repolizar la célula y la tasa de cambio de esta repolizarización son muy variables; dependen del estado de la bomba de sodio de la célula, el

cual cambia de una anguila a otra y de una célula a otra. A veces, una concentración de 2×10^{-8} M repoliza la célula en 8 minutos y a veces una de 6×10^{-6} M repoliza solo 50% en una hora. En el experimento de la Figura 6 se ha lavado la célula antes de una recuperación completa debido a aplicación de tetrodotoxina. Se observa de nuevo una despoliarización más lenta, que se estabiliza en un potencial de 10 mV primero y 20 mV después. Pero si para lavar se espera a que la tetrodotoxina repolizar la membrana casi completamente, no se presenta una despoliarización espontánea y se necesita otra estimulación para despoliarizar la célula.

Albuquerque y sus colaboradores informaron que la procaina y la lidocaína, anestésicos locales no muy fuertes, previenen la despoliarización por batracotoxina, pero no la revierten. La tetracaína es entre 2 y 5 veces más potente como anestésico local que la procaina. La Figura 7 muestra un experimento típico donde 2×10^{-4} M de tetracaína revierte, casi por completo, la despoliarización produ-
mencionadas. Las concentraciones mayores de 1×10^{-3} M pueden revertir la despolarización causada por batracotoxina, pero solo parcialmente como muestra la Figura 9. Las concentraciones más bajas previenen una despolarización, pero se prolonga el potencial de acción y se mantiene un estado estacionario durante una estimulación continua. La membrana se despolariza inmediatamente cuando se lava la célula con solución fisiológica.

La procaina tiene la misma potencia que la procaína como inhibidor de la respuesta producida por carbamolcolina, pero es 10 veces menos potente como antagonista de la batracotoxina. Se necesita una concentración mayor de 1×10^{-2} M para obtener una repolarización parcial y transitoria comparable a la observada con la procaina.

DISCUSION

Los resultados descritos en este artículo sobre los efectos de la batracotoxina en la electroplaca difieren de los que informan Hogan y Albuquerque y Albuquerque et al. por los siguientes aspectos:

1. La batracotoxina puede penetrar y despolarizar la membrana solamente cuando los canales de sodio están abiertos debido a la activación de los mismos. No se observa despolarización en el estado de reposo de la célula (Figura 3). El hecho de que la batracotoxina no penetre durante este período, se puede deber a que los canales cerrados no permiten su paso a su sitio de acción, o a su inhibibilidad para unirse con macromoléculas en su conformación en reposo.

El pH básico facilita la penetración o la unión: concentraciones de 2×10^{-9}M tiene efectos a pH 8,5, mientras que no los hay a pH6 (Observaciones no publicadas). En la
Cuadro 1: Comparación de la estructura química y potencia de los compuestos ensayados como antagonistas de batracotoxina.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Estructura química</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraquina</td>
<td></td>
<td>2x10⁻⁴M</td>
</tr>
<tr>
<td>Difenhidrina</td>
<td></td>
<td>2x10⁻⁴M</td>
</tr>
<tr>
<td>Metiloduro de Difenhidrina</td>
<td></td>
<td>2x10⁻⁴M</td>
</tr>
<tr>
<td>Procaína</td>
<td></td>
<td>1x10⁻³M</td>
</tr>
<tr>
<td>Lidocaína</td>
<td></td>
<td>1x10⁻³M</td>
</tr>
<tr>
<td>Acetilcolina</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Concentración mínima necesaria para revertir la despolarización causada por batracotoxina.

** Estructura química de acetilcolina para indicar la relación a los compuestos anteriores.

batracotoxina existe un nitrógeno terciario con un pK 7,45, el cual tiene muy poca carga a pH 8.5; debido a esto, la batracotoxina es más liposoluble a pH 8.5. Resultados preliminares con el análogo cuaternario de la batracotoxina señalan una potencia 50 a 100 veces inferior a la de la batracotoxina, pero con la misma acción cualitativa. Esto podría indicar que la mejor liposolubilidad de la batracotoxina facilita la penetración, y es responsable por su alta potencia; también permite concluir que el sitio de acción de la batracotoxina está dentro de la fase lípida de la membrana, un sitio no accesible fácilmente cuando la membrana está en estado de reposo y los canales de sodio están cerrados.

2. Cuando la batracotoxina está dentro de la membrana, la despolarización progresa con una tasa de cambio mucho más alta que lo observado en todas las otras preparaciones\(^5\). (Figura 3). En la electrolucina hay una génesis del potencial de acción ligera y distinta a la de los otros tejidos nerviosos\(^16\). Durante la subida del potencial de acción ocurre una inactivación despolarizante de potasio además de la activación de sodio, la cual elimina la neutralización de los dos flujos iónicos de sentidos opuestos y de esta manera aumenta la corriente neta hacia el interior de la célula. Por otra parte, la cantidad de iones de sodio que entra a la célula durante un potencial de acción es 100 veces mayor que en el axón del calamar por área calculada. Es posible que esto se deba a que los canales de sodio están abiertos por un período más largo, ya que la duración del potencial de acción en la electrolucina es de 2 a 4 mseg (a 25°C), mientras que en los músculos de rana y en el axón del calamar es de 0,5 mseg. Otra posibilidad es que el número de canales de sodio por unidad de área sea mayor en la electrolucina que en otras preparaciones debido a su especialización. Otra característica de esta preparación, la ausencia de activación de potasio durante el potencial de acción, hace la corriente del sodio aún más efectiva y se necesita menos corriente de sodio para despolarizar la célula al mismo nivel que si hubiera una corriente de potasio más o menos simultánea. Esto podría explicar por qué la batracotoxina despolariza la membrana tan rápido en la electrolucina. El flujo de sodio al interior durante un
potencial de acción es mayor que en otras preparaciones y aparentemente la penetración y la acción de la batractotoxina dependen de éste.

3. Si se lava la célula con solución fisiológica después de una repolarización por tetrodotoxina el potencial de acción se recupera y no hay despolarización hasta cuando se estimula la célula de nuevo (Figura 6). Esto se observa solamente en anguilas sanas y fuertes, en células muy buenas con potenciales grandes. El órgano eléctrico de la anguila contiene la Na, K-ATPasa más activa de todos los tejidos estudiados en la naturaleza. Esta bomba de sodio del transporte activo podría evitar la despolarización o disminuir su tasa de cambio.

4. No se encuentran las mismas diferencias en el antagonismo entre batractoxina y tetrodotoxina y entre batractoxina y los anestésicos locales que Albuquerque y colaboradores probaron en el axón del calamar. Todos los anestésicos locales ensayados (Cuadro 1) revierten la despolarización causada por batractoxina en concentraciones mayores de las indicadas en el Cuadro.

La potencia de estas drogas está de acuerdo con su poder como anestésicos locales, pero la concentración es 10 veces mayor que la necesaria para el antagonismo con carbamamilcolina en la sinapsis.

La conclusión que la tetrodotoxina no tiene el mismo sitio de acción que la batractoxina (como lo indica el experimento ilustrado en la Figura 5) está de acuerdo con las observaciones de Albuquerque et al. A diferencia de la batractoxina, la tetrodotoxina no es liposoluble, no puede penetrar dentro de la fase líquida, pero actúa sobre los mismos canales de sodio que la batractoxina aunque en la superficie de la membrana. La presencia de una concentración baja de tetrodotoxina que no bloquea el potencial de acción, previene la despolarización y el aumento en la duración del potencial de acción, pero no la penetración y unión de la batractoxina, ya que cuando se lava la célula con solución fisiológica se observa la despolarización inmediatamente. Por otro lado cuando se aplica tetrodotoxina a una concentración que si bloquea el potencial de acción y enseguida se lava la célula, no hay despolarización porque la batractoxina no puede penetrar cuando el potencial de acción está bloqueado. Lo mismo se observa con los anestésicos locales, cuando se aplican junto con batractoxina en concentraciones que bloquean el potencial de acción. En estas condiciones la batractoxina no puede penetrar ni tampoco hay despolarización cuando se lava la célula. La diferencia principal entre la acción de tetrodotoxina y de los anestésicos locales se observa cuando se aplica la batractoxina junto con una concentración de un anestésico local que no bloquea el potencial de acción.

En experimentos preliminares se observa, con estimulación repetida en presencia de batractoxina y de procaína, un aumento en la duración del potencial de acción que se estabiliza y no conduce a una despolarización mantenida. Lo mismo se observa con una concentración baja de batractoxina sola. Sin embargo, no es seguro si esta diferencia y también la repolarización parcial producida por procaína (Figura 9) son diferencias cualitativas o simplemente cuantitativas. La observación de que el análogo cuaternario de la difenhidramina tiene la misma acción y potencia que el compuesto terciario, que es más liposoluble, indica que actúan en la superficie de la membrana como lo hace la tetrodotoxina. La diferencia en la potencia entre batractoxina y los anestésicos locales es del orden de magnitud de 5 a 6. Con una diferencia tan grande es difícil demostrar inhibición competitiva, especialmente cuando la acción del inhibidor es tan compleja y no tiene un solo sitio de acción como es el caso de los anestésicos locales.

Se nota en el Cuadro 1 que los anestésicos locales más potentes tienen la estructura química semejante a la acetilcolina. Sin embargo, si este hecho es mera coincidencia, o tiene algún significado importante, no se conoce en el presente.

AGRADECIMIENTOS
Los autores expresan sus agradecimientos a Colciencias por la financiación de estos estudios (Co) 15-3-13-73 y al Dr. John Daly del NIH, Bethesda, Md. USA por su generosa ayuda sin la cual no se hubiera podido realizar la presente investigación. También se agradece al Sr. Roberto Cabrera y Sr. Jorge Jurado por la preparación de las ilustraciones y a los Sres. Hugo Barona y José Trejos por su asistencia técnica y al Sr. Guillermo Lasso por su ayuda en el mantenimiento de las anguilas.

SUMMARY
Batrachotoxin, the venom of a frog from the Chocó, has been used on the electrophysic of the electric eel while registering action and resting potential with intracellular microelectrodes. Batrachotoxin depolarizes the cell and increases the duration of the action potential only when the cell is stimulated repeatedly that is, when the sodium channels are open.

Tetrodotoxin, some local anesthetics and difenhidramine antagonize the action of Batrachotoxin. The nature of this antagonism is discussed.

REFERENCIAS
CONCENTRACIONES DE ELECTROLITOS EN EL SUDOR DE NIÑOS NORMALES Y DESNUTRIDOS

Jorge A. Escobar M., M.D., M.P.H. α, y
Arthur S. Dover, M.D. β

EXTRACTO

Se midieron concentraciones de electrolitos del sudor en 144 niños. Se observaron aumentos en las concentraciones de cloro sin los aumentos correspondientes en sodio y potasio al comparar niños bien nutridos con niños en diferentes estados de desnutrición. Ningún paciente presentó valores suficientemente elevados de cloro como para confundir la desnutrición primaria con la mucoviscidosis.

INTRODUCCIÓN

El presente estudio se llevó a cabo para investigar posibles variaciones en las concentraciones de electrolitos en el sudor con respecto al estado nutricional y para descartar la posibilidad de que sea la mucoviscidosis una causa primaria, no descubierta, de algunos casos de desnutrición en la niñez.

2. Profesor Asociado, Departamento de Pediatría, Universidad del Valle.
3. Auxiliar de Cátedra, Departamento de Pediatría, Universidad del Valle e Investigador Asociado, Universidad de Tulane-Universidad del Valle, ICMR.
4. Se clasificó el estado nutricional de los pacientes utilizando el peso actual como el porcentaje del peso ideal para su edad cronológica.

De acuerdo con estas normas, se considera que los niños que tengan de 90 a 100% o más del peso ideal como adecuadamente nutrido; entre 75 y 89% como desnutrición leve (Grado I); entre 60 y 74% como desnutrición moderada (Grado II), y si tiene menos de 60% como desnutrición severa (Grado III).

Se obtuvo sudor de la cara volar del antebrazo, empleando el método de iontoforesis con estimulación por pilocarpina descrito por Schwegman y Antonowicz, y solo se acep...