The dermatophytes most frequently isolated were Trichophyton mentagrophytes (76%) and T. rubrum (21%). T. tonsurans and Epidermophyton floccosum were also isolated.

Identification of the sexual phases of T. mentagrophytes revealed both species; Arthroderma benhamiae and A. vanbreuseghemii, the latter is reported for the first time in Colombia.

REFERENCIAS

CONTENIDO DE ALCOHOL METILICO EN ALCOHORES ANTEISPECTICS COLOMBIANOS

Eduardo López A., Q. F., 1 Ernesto Barbosa M., M. D., Ph. D. 2 y Gerzain Rodríguez T., M. D. 3

EXTRACTO
El análisis por cromatografía de gases de 154 muestras de “alcoholantes” de diferentes marcas comerciales, enviadas al Instituto Nacional de Salud por el Ministerio de Salud Pública, recolectadas en diferentes ciudades de Colombia, en sitios de libre venta al público, muestra que 66 de ellas (42.8%) contienen metanol en concentraciones desde 0.6 hasta 65%. Se llama la atención sobre el riesgo que representa el uso de estos alcoholates pues su ingestión, generalmente accidental, o su absorción percutánea, sobre todo en niños tratados para problemas febriles con fricciones de alcohol, pueden desencadenar la intoxicación aguda, ya conocida, por metanol. Asimismo, dentro de las 88 muestras sin metanol, 76 (86.4%) de ellas, muestran concentraciones de etanol por fuera de los límites permitidos.

INTELOCUCION
La intoxicación por alcohol metílico en Colombia es un problema relativamente frecuente, ocasionado la mayoría de las veces por la ingestión de licores adulterados. Otra forma de intoxicación menos conocida ocurre por absorción percutánea, sobre todo en niños que son profusamente fraccionados en estados febriles con alcoholantes que contienen metanol.

Aun cuando no hay trabajos nacionales que determinen la magnitud del problema, en el Instituto de Medicina Legal en Bogotá (IML), se han comprobado mediante análisis toxicológicos, 76 casos fatales de intoxicación con metanol, en el año comprendido entre Mayo de 1976 y Abril de 1977. De ellos, 20 se pueden atribuir a la absorción percutánea de metanol, por el uso de alcoholantes antidespectós adulterados. Estas 20 muertes ocurrieron en niños menores de 10 años. 1

Se entiende por alcohol antipectético un alcohol etílico al 70% v/v, de uso tópico y cuyo contenido metánolílico no excede de 100 partes por millón. 2 El control de calidad de los alcoholantes antidespectéticos es una labor ejercida por el Ministerio de Salud Pública (MSP), a través de la Sección de Análisis del Instituto Nacional de Salud (INS). Esta sección recibe y analiza las muestras de licores y alcoholantes remitidas a ella por la División de Vigilancia de Productos Bioquímicos del MSP, la cual a su vez, al conocer el informe respectivo, toma las medidas legales a que haya lugar.
En el presente trabajo se analizó la calidad de los alcoholes antisépticos de diferentes marcas, remitidos al INS durante un periodo de un año (Julio de 1976 - Junio de 1977), y en caso de adulteración, se determinó el porcentaje de metanol que contenían. De igual manera, se determinó si su contenido de etanol se ajustaba a las normas establecidas.

MATERIAL

Se analizaron 154 muestras de "alcoholes antisépticos", correspondientes a 30 marcas comerciales, tomadas por los Servicios de Salud de los Departamentos del Meta, Huila, Boyacá, Valle, Risaralda, Quindío, Tolima, Intendencia del Caquetá y Distrito Especial de Bogotá, recolectadas desde Julio de 1976 a Junio de 1977.

Los patrones de metanol, etanol y acetona, fueron obtenidos en la Polyscience Corporation, Chemical Division 6366-Gross Point Road-Niles, Illinois, USA.

EQUIPOS

Se utilizaron dos cromatógrafos de gases:

1. Cromatógrafo de gases Perkin Elmer, Modelo 900, con detector de llama, equipado con columnas de acero inoxidable, de 6m x 3mm, empacadas con Hallcomid 18, Teflón 0.5, Carbowax 20 M, 80-100 "mesh" precalentadas a 130°C.

2. Cromatógrafo de gases Pye Unicam GCV con detector de llama, equipado con columnas de vidrio de 2m x 4mm, empacadas con Porapak Q, 100-120 "mesh", precalentadas a 230°C.

Controles y calibración de los cromatógrafos: Se prepararon patrones de alcohol etílico y alcohol metílico con concentraciones de 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, y 0.9%, a las cuales se les adicionó como patrón interno acetona, en una concentración constante de 0.5%.

Se determinaron los tiempos de retención del metanol, del etanol y del patrón interno de las soluciones patrón, inyectando un microlitro del patrón de mayor concentración (0.8%), trabajando el cromatógrafo Perkin Elmer a una temperatura de la columna de 70°C y usando nitrógeno como gas de arrastre con un flujo de 38 ml por minuto. El cromatógrafo Pye Unicam se trabajó con una temperatura de la columna de 150°C y también se usó nitrógeno como gas de arrastre a un flujo de 40 ml por minuto (Figura 1). Seguidamente se inyectaron las diferentes soluciones patrón de los 2 alcoholes, obteniéndose así el valor de la relación de la altura de cada uno de ellos, con referencia a la altura obtenida con la acetona. Representando en las abscisas la concentración de alcohol y en las ordenadas el valor de la relación, se observa que el resultado es una línea recta, la cual indica la relación lineal de estos valores (Figura 2).

Muestras problema: Los alcoholes antisépticos remitidos, se diluyeron al 1%, adicionándoles también acetona como patrón interno, en una concentración fija de 0.5%. Se

Figura 1. A la izquierda puede observarse el orden de elución de acetona (1), metanol (2), y etanol (3) de la columna de Hallcomid. A la derecha se muestra la elución obtenida de la columna de Porapak Q. Nótese el cambio en el orden de elución. Los números corresponden a los mismos compuestos del cromatograma de la izquierda.

inyectaron al cromatógrafo y se obtuvo el valor de la relación alcohol/acetona. Este valor se buscó en la gráfica representada en la Figura 2, determinándose así la concentración de metanol, de etanol o de ambos, procentualmente para cada muestra.

RESULTADOS

De las 154 muestras examinadas, 66 (42.8%) contenían me
tanol (Cuadro 1), en un porcentaje variable, desde un mínimo de 3° hasta un máximo de 65° (Cuadro 2, Figura 3).

Cuadro 1. Discriminación de las Muestras Analizadas

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Con metanol</th>
<th>Sin metanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>66</td>
<td>88</td>
</tr>
<tr>
<td>100°</td>
<td>42.8°</td>
<td>57.2°</td>
</tr>
</tbody>
</table>

La determinación del porcentaje de etanol en los alcoholados mostró cifras variables, obviamente menores que lo establecido en la Farmacopea, según se ilustra en el Cuadro 3. Debe recordarse que 14 de estas muestras no contenían etanol, es decir, que eran soluciones constituidas únicamente por metanol y agua.

De las 88 muestras negativas para metanol, la determinación de la concentración del alcohol etílico mostró valores menores de los permitidos (Cuadro 4, Figura 4), encontrándose se solamente 12 muestras con la concentración de alcohol etílico exigida.

Cuadro 3. Concentración de Etanol en Porcentaje en las 66 Muestras Adulteradas con Metanol

<table>
<thead>
<tr>
<th>Sin Etanol</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 5.7°</td>
<td>10</td>
</tr>
<tr>
<td>De 10.1°</td>
<td>13</td>
</tr>
<tr>
<td>De 20.1°</td>
<td>11</td>
</tr>
<tr>
<td>De 30°</td>
<td>7</td>
</tr>
<tr>
<td>De 40.1°</td>
<td>9</td>
</tr>
<tr>
<td>De 60°</td>
<td>1</td>
</tr>
<tr>
<td>De 60.1°</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>66</td>
</tr>
</tbody>
</table>

Figura 3. A la izquierda se observa un cromatograma de un alcohol adulterado con un alto contenido de metanol, pico 2, a la derecha se puede observar el cromatograma de un alcohol antiséptico, cuyo contenido alcohólico es exclusivamente de metanol.

Cuadro 2. Concentración de Metanol en Porcentaje en las 66 Muestras Positivas

<table>
<thead>
<tr>
<th>De</th>
<th>3°</th>
<th>a</th>
<th>10°</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>De</td>
<td>10.1°</td>
<td>a</td>
<td>20°</td>
<td>6</td>
</tr>
<tr>
<td>De</td>
<td>20.1°</td>
<td>a</td>
<td>30°</td>
<td>9</td>
</tr>
<tr>
<td>De</td>
<td>30°</td>
<td>a</td>
<td>40°</td>
<td>13</td>
</tr>
<tr>
<td>De</td>
<td>40.1°</td>
<td>a</td>
<td>50°</td>
<td>18</td>
</tr>
<tr>
<td>De</td>
<td>50°</td>
<td>a</td>
<td>60°</td>
<td>11</td>
</tr>
<tr>
<td>De</td>
<td>60.1°</td>
<td>a</td>
<td>65°</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4. Alcoholados antisépticos sin metanol. A la izquierda, la concentración de etanol, pico 3, es la exigida (70°). A la derecha, la concentración de etanol, pico 3, es menor, como puede observarse por la menor altura del pico, comparado con el pico de la acetona.

DISCUSION

Los resultados demostrados indican que 80° de los “alcoholados antisépticos” disponibles en el comercio no se ajustan a los requisitos indispensables.
Cuadro 4. Concentración en Porcentaje de Etanol en las 88 Muestras que no Tenían Metanol

<table>
<thead>
<tr>
<th>Concentración (%)</th>
<th>Número de Muestras</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 48 a 50<sub>0</sub></td>
<td>1</td>
</tr>
<tr>
<td>De 50.1 a 60<sub>0</sub></td>
<td>19</td>
</tr>
<tr>
<td>De 60.1 a 68.4<sub>0</sub></td>
<td>42</td>
</tr>
<tr>
<td>De 68.5 a 71.5<sub>0</sub></td>
<td>12</td>
</tr>
<tr>
<td>Superior a 71.6<sub>0</sub></td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL 88

* Límites aceptados por la Farmacopea de los EE.UU., edición XIX, oficial en Colombia.

Si bien es inadecuado que contengan concentraciones bajas de etanol, o excepcionalmente, muy altas, el problema fundamental que se quiere hacer resaltar es su frecuencia (42.8₀) y alto contenido de metanol, que muchas veces llega a ser del 100₀. Estos alcoholes poseían todos licencias del MSP para su venta, o la adquisición de ésta licencia se hallaba en trámite. De todas maneras, todos eran de libre venta al público.

El metanol es un potente veneno que conduce a la ceguera del intoxicado o a su muerte en acidosis. Se absorbe por vía digestiva, por inhalación, y por vía transcutánea. Esta última forma de penetración al organismo constituye el peligro mayor de la adulteración del "álcool antiséptico" con metanol, pues con frecuencia se acostumbra frotar con alcohol la superficie cutánea de enfermos febriles, como efectivo medio de controlar la temperatura. Los pacientes así tratados, muchas veces en forma repetida, pueden sufrir la intoxicación por metanol. Es posible que por ser este alcohol muy volátil, una buena cantidad de tóxico ingrese al organismo por inhalación, durante el proceso de fricción.

La intoxicación metánolica por absorción percutánea se ha demostrado en Colombia. El Laboratorio de Toxicología del IML de Bogotá ha comprobado que 20 niños menores de 10 años murieron durante el periodo comprendido entre Mayo de 1976 y Abril de 1977 como consecuencia de haber sido tratados con alcoholes antisépticos adulterados con metanol.

La absorción percutánea del metanol encuentra la barrera de permeabilidad epidérmica representada por los lípidos derivados de los cuerpos de Odland o "cuerpos lamelares", que son secretados por los queratinocitos al espacio extracelular y ejercen su mayor impermeabilidad en la unión de las capas córnea y granulosa; como el metanol es un potente solvente de los lípidos, su penetración percutánea no encuentra dificultad. Otros factores, tales como el pequeño tamaño de la molécula y su concentración en el solvenente, contribuyen a que penetre con mayor facilidad.

La dosis tóxica de metanol en el hombre es variable. Roc afirma que "1.0 g/kg de peso o aún menos, puede producir ceguera e inclusive la muerte". La gran superficie cutánea, expuesta repetidamente a fricciones con metanol, muchas veces puro, como se ha visto en algunos productos, es capaz de absorber la dosis mencionada.

Una vez que el metanol ha penetrado al organismo es metabolizado por oxidación, por la enzima deshidrogenasa alcohólica, la misma que cataliza la oxidación del etanol, aunque con un Km mayor para el metanol, lo cual explica por qué en algunas ocasiones se utiliza el etanol como tratamiento de la intoxicación por alcohol metílico. Los productos de la oxidación del metanol son el formaldehído y el ácido fórmico, que son los metabolitos realmente tóxicos porque producen severa acidosis metabólica y variados efectos cardiovasculares que pueden llevar rápidamente a la muerte del paciente. En casos de menor gravedad, se pueden producir lesiones irreversibles del sistema nervioso, especialmente a nivel de las células ganglionares de la retina, con pérdida de la visión, muchas veces definitiva.

Finalmente, se puede afirmar que la mayoría de los "alcoholes antisépticos" de libre venta en todo el país, constituyen un mortal veneno en las manos de todos, situación que hace inaplicable para el MSP tomar las medidas tendientes a corregir este grave riesgo.

SUMMARY

Gas liquid chromatographic analysis of 154 samples of "antiseptic alcohol" from samples collected in different Colombian cities is performed.

The analysis shows that 66 of them (42.8₀) contain methanol in concentrations ranging from 3₀ to 65₀. Emphasis done on the high risk of intoxication using these badly adulterated alcohols in chemotherapy procedures. It also demonstrates that 86.4₀ of the samples have a smaller concentration of ethanol than the one defined by the United States Pharmacopeia which is currently accepted in Colombia.

BIBLIOGRAFÍA