

English version

Versión español

CrossMark

OPEN ACCESS

Citation: Serrano-coll h, Aristizábal-parra LK, Salamanca-Leguizamón C. Cutaneous leishmaniasis: immunological insights and clinical challenges. Colomb Méd (Cali), 2025; 56(3):e3006750 http://doi.org/10.25100/cm.v56i3.6750

 Received:
 18 apr 2025

 Revised:
 22 aug 2025

 Accepted:
 03 sep 2025

 Published:
 15 sep 2025

Keywords

Neglected diseases, ulcers, inflammation, and immune response

Palabras clave

Enfermedades olvidadas, ulceras, inflamación y respuesta inmune

Copyright: © 2025 Universidad del Valle

REVIEW

Cutaneous leishmaniasis: immunological insights and clinical challenges

Leishmaniasis cutánea: perspectivas inmunológicas y desafíos clínicos

Héctor Serrano-Coll,¹ Lucero Katherine Aristizábal-Parra,² Graciela Olarte,³ Carolina Salamanca-Leguizamón³

1 Universidad CES, Instituto Colombiano de Medicina Tropical, Medellín, Colombia, 2 Universidad Industrial de Santander, Escuela de Microbiología, Bucaramanga, Colombia, 3 UNISANGIL, Grupo de Investigación en Ciencias de la Educación y de la Salud (ICES), San Gil, Colombia.

Abstract

Cutaneous leishmaniasis is a neglected tropical disease caused by Leishmanias pecies and transmitted through the bite of infected female sandflies. It primarily affects the skin and mucous membranes, with a broad spectrum of clinical manifestations that depend mainly on the host's immune response. The immune balance between Th1, Th17, and Th2 pathways plays a pivotal role in disease progression and outcome. Hyperergic responses (Th1/Th17) are associated with localized and mucosal forms, while anergic responses (Th2/Treg) underline disseminated and diffuse cutaneous forms. Despite its global prevalence, particularly in tropical and subtropical regions, cutaneous leishmaniasis remains underdiagnosed and mismanaged due to a lack of awareness of its immunopathogenesis, clinical diversity, and diagnostic limitations. Treatment continues to rely primarily on pentavalent antimonial compounds, which have significant toxicity, underscoring the urgent need for safer and more effective therapeutic alternatives. This narrative review aims to examine the immune response, clinical manifestations, diagnostic methods, and medical management strategies for cutaneous leishmaniasis. Understanding the complex interplay between immune responses and clinical manifestations is essential for improving diagnosis and treatment

Resumen

La leishmaniasis cutánea es una enfermedad tropical desatendida causada por especies deLeishmaniay transmitida a través de la picadura de moscas de arena hembras infectadas. Afecta principalmente la piel y las membranas mucosas, con un amplio espectro de manifestaciones clínicas que dependen principalmente de la respuesta inmune del huésped. El equilibrio inmunológico entre las vías Th1, Th17 y Th2 juega un papel fundamental en la progresión y el desenlace de la enfermedad. Las respuestas hiperérgicas (Th1/Th17) se asocian con formas localizadas y mucosas, mientras que las respuestas anérgicas (Th2/Treg) subyacen en las formas cutáneas diseminadas y difusas. A pesar de su prevalencia global, especialmente en regiones tropicales y subtropicales, la leishmaniasis cutánea sigue siendo subdiagnosticada y mal manejada debido a la falta de conocimiento sobre su inmunopatogénesis, diversidad clínica y limitaciones diagnósticas. El tratamiento continúa basándose principalmente en compuestos antimoniales pentavalentes, que presentan una toxicidad significativa, lo que resalta la urgente necesidad de alternativas terapéuticas más seguras y efectivas. Esta revisión narrativa tiene como objetivo examinar la respuesta inmune, las manifestaciones clínicas, los métodos diagnósticos y las estrategias de manejo médico de la leishmaniasis cutánea. Comprender la compleja interacción entre las respuestas inmunitarias y las manifestaciones clínicas es esencial para mejorar el diagnóstico y el tratamiento

Conflict of interest

None declared

Funding:

The authors received no financial support for the completion of this work.

Authors contributions:

HSC and LKAP wrote the manuscript. Figures were created by HSC using the Biorender toolkit resources. CSL conducted a critical review and GO. All authors read and approved the manuscript

Corresponding author

Héctor Serrano-Coll, Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia. Phone: +604-3053500. Address: Cra. 43A #52 Sur - 99, Medellín, Colombia. E-mail: hserrano@ces.edu.co

Remark

1) Why was this study conducted?

This study was conducted to examine how the host immune response shapes the clinical manifestations, diagnosis, and treatment of cutaneous leishmaniasis. Since the disease remains underdiagnosed and often mismanaged, the review aimed to clarify its immunopathogenesis and current clinical challenges..

2) What were the most relevant results of the study?

- The study highlights the central role of the balance among Th1, Th17, and Th2 responses in determining disease progression and clinical forms.
- Hyperergic responses (Th1/Th17) are associated with localized and mucosal disease.
- Anergic responses (Th2/Treg) underlie disseminated and diffuse forms.
- Diagnostic limitations persist and contribute to underdiagnosis.
- Treatment continues to rely on pentavalent antimonials, which have considerable toxicity.

3) What do these results contribute?

They provide a deeper understanding of how the host immune system determines the clinical expression and progression of cutaneous leishmaniasis. This insight is essential for improving diagnostic accuracy, guiding more appropriate therapeutic decisions, and emphasizing the urgent need for safer and more effective treatments.difference between groups showed borderline significance, larger studies may confirm these findings. The observed gender-related difference suggests IL-36 γ could be a potential biomarker. Future prospective studies with larger sample sizes should investigate IL-36 γ in pediatric allergic rhinitis, considering sex-related differences, to determine its clinical utility in assessing disease severity and guiding management.

Introduction

Cutaneous leishmaniasis is a neglected chronic granulomatous disease that affects the skin and mucous membranes. It is caused by at least 20 species of an obligate intracellular protozoan belonging to the genus *Leishmania*. It is transmitted by the bite of female sandflies of the genus *Phlebotomus* (Asia, Africa, and Europe) and *Lutzomyia* (the Americas) ¹⁻³. According to the World Health Organization (WHO), this disease is considered one of the seven most significant tropical pathologies globally. It is endemic in nearly 100 countries, with 90% of new cases concentrated in Afghanistan, Bangladesh, India, Bolivia, Brazil, Colombia, Iran, Peru, and Syria ⁴⁻⁶.

Over the past 20 years, approximately one million cases of cutaneous leishmaniasis have been reported worldwide, establishing it as a public health problem in tropical countries ⁷. This increase in disease burden is partially attributable to the lack of a gold standard for direct parasite detection, as well as limited awareness among healthcare professionals regarding the immune response, clinical characteristics, diagnostic techniques, and appropriate disease management. Therefore, this review aims to examine the immune response, clinical manifestations, diagnostic methods, and medical management strategies for cutaneous leishmaniasis.

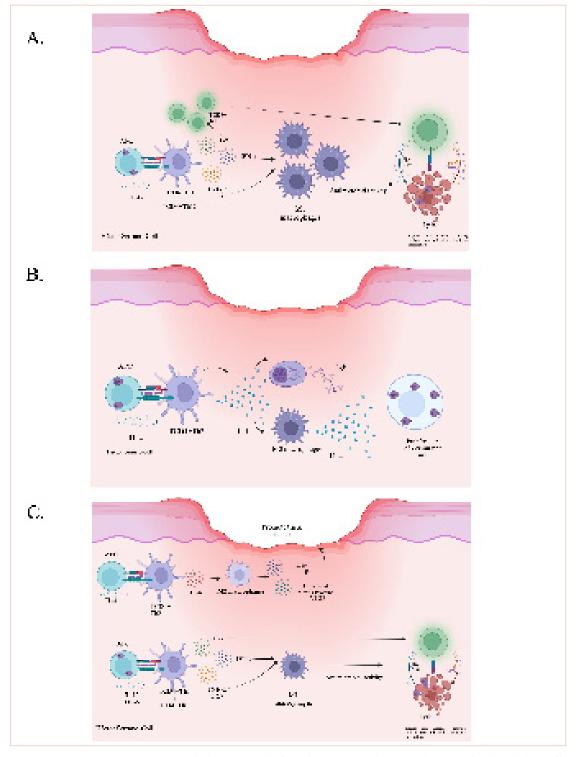


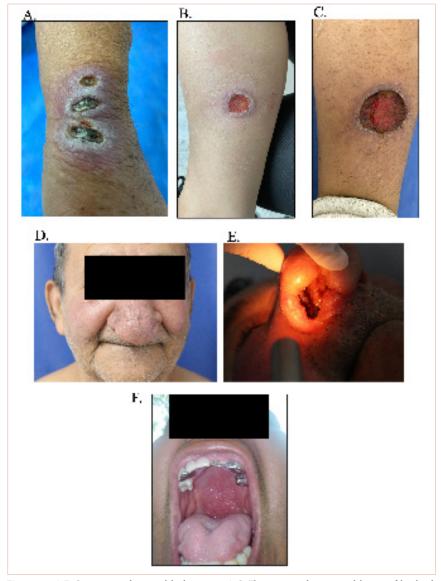
Figure 1. A-C. Immune response in cutaneous leishmaniasis. A. This figure illustrates increased CD4+ T cell activity with a Th1 and Th17 profile, leading to the release of pro-inflammatory cytokines such as IL-17 and TNF-α. These cytokines promote the recruitment of macrophages, which, under the influence of IFN-γ, differentiate into the M1 phenotype macrophages with high lytic and phagocytic capacity. Alongside the cytotoxic activity of CD8+ T cells, this response contributes to the destruction ofLeishmaniaspp, but also causes collateral tissue damage. B. This figure depicts enhanced CD4+ T cell activity with a Th2 profile, promoting the release of anti-inflammatory cytokines such as IL-4. IL-4 drives the differentiation of macrophages into the M2 phenotype, which exhibits anti-inflammatory functions. Additionally, it promotes antibody isotype switching in B cells towards IgE, which has limited opsonization capacity and a reduced ability to induce antibody-dependent cytotoxic responses. This immune environment facilitates the proliferation ofLeishmaniaspp. C. This figure highlights that the immunological balance between the aforementioned responses is critical for controlling the infection. On one hand, it promotes a Th1 and Th17 response by CD4+ T cells and a cytotoxic response by CD8+ T cells capable of destroying the parasite. On the other hand, a Th2 response drives the differentiation of M2 macrophages, which contributes to tissue repair.

Immune response in leishmaniasis

The adaptive immune response plays a central role in controlling cutaneous leishmaniasis. Traditionally, it has been postulated that in infections caused by intracellular microorganisms such as *Leishmania* spp., the Th1-mediated response is crucial for controlling the infection, while the Th2 response facilitates parasite proliferation. However, this statement is incomplete, as both Th1 and Th2 responses, together with the involvement of Th17 cells, are necessary for effective infection control ⁸. During *Leishmania* infection, the balance between different T helper responses plays a crucial role in disease outcome ^{9,10}. On one hand, Th1 and Th17 responses contribute to parasite elimination by enhancing phagocyte activation and promoting the production of inflammatory cytokines and cytotoxic molecules, which help control the infection ¹¹⁻¹³. On the other hand, the Th2 response promotes a tissue-repair environment, facilitating patient recovery by reducing inflammation and supporting wound healing ¹⁴. However, an excessive Th2 response may also contribute to parasite persistence by suppressing effective immune mechanisms.

Immune balance: The cornerstone ofLeishmania control

In infections caused by intracellular microorganisms, such as Leishmania spp., the balance between immune responses (Th1 and Th17 versus Th2) is fundamental in controlling this infection ¹⁵. An imbalance in these responses can lead to the development of leishmaniasis in its various clinical forms. Figure 1 A-C illustrates the immune response in a host infected with *Leishmania* spp.


The Th1 and Th17 patterns in CD4+ T lymphocytes play a crucial role in infection control by promoting the release of cytokines such as TNF- α ¹⁶. This, along with IL-17 released by Th17 CD4+ T lymphocytes, induces the recruitment of phagocytes such as neutrophils and macrophages ¹⁶⁻¹⁹. Moreover, IFN- γ stimulates the differentiation of macrophages into their classical or M1 phenotype, characterized by high phagocytic activity against the parasite ²⁰.

However, while this response is effective in initially eliminating the pathogen, its persistence can lead to a chronic pro-inflammatory state ⁹. Sustained inflammation favors the chronicity of lesions and the development of more severe forms of the disease, such as localized cutaneous leishmaniasis and mucocutaneous leishmaniasis ²¹.

Consequences of Th2 immune imbalance

On the other hand, if the host immune response against *Leishmania* spp. Skews toward a Th2 effector pattern in CD4+ T lymphocytes, characterized by the release of IL-4 and IL-10 ²², several immunological consequences may ensue. One such consequence is the differentiation of macrophages into an alternative or M2 phenotype, characterized by anti-inflammatory activity mediated through the release of IL-10 and TGF-β ^{20,23}. These cytokines, especially TGF-β, play a crucial role in inducing the differentiation of some CD4+ T cells into regulatory phenotypes, such as Th3 and Tr1 23. Although the phenotypes involved in leishmaniasisinduced regulatory T cells are not yet clear, the study conducted by Brelaz et al. 24, demonstrated a higher expression of these cells in patients with active leishmaniasis. Therefore, we hypothesize that Th3 cells, driven by TGF-β, could regulate inflammatory responses and promote immune tolerance, creating an immunosuppressive environment that may facilitate Leishmania persistence 22,25. Additionally, Tr1 cells, characterized by IL-10 secretion, can help control excessive inflammation and prevent tissue damage, but may also contribute to chronic infection by suppressing protective immune responses. This immunosuppressive effect may hinder cellular immunity, allowing parasite proliferation and the development of severe forms such as disseminated or diffuse cutaneous leishmaniasis.

Figure 2. A-F. Cutaneous and mucosal leishmaniasis. A-C. These images depict typical lesions of localized cutaneous leishmaniasis, characterized by raised, well-defined edges and ulcerated, flat centers with granulated tissue. The lesions commonly appear on exposed areas such as the face and limbs and may be accompanied by regional lymphadenopathy. D-F. These images illustrate clinical features of mucosal leishmaniasis, including the characteristic tapir-like nose deformity due to cartilage destruction, perforation of the nasal septum, and a cobblestone appearance of the palate resulting from chronic inflammation and mucosal damage.

Immune regulation and disease control

Nonetheless, the balance between these effector patterns is crucial for controlling pathology. The presence of CD4+ T lymphocytes with Th1 and Th17 patterns promotes an effective cellular immune response against the microorganism ^{23,26}. This is complemented by a cytotoxic response mediated by CD8+ Tc1 T lymphocytes, which release perforins and granzymes to induce osmotic lysis of *Leishmania*-infected cells ²⁷. However, the cellular immune response mediated by CD4+ Th1, Th17, and CD8+ Tc1 cells must be balanced by a subset of CD4+ T lymphocytes with a Th2 profile ^{9,28}, which promotes the activation of M2 macrophages ²². These macrophages promote the repair of tissue affected by parasites and, over time, induce the action of induced regulatory T cells (iTregs), thereby modulating the activity of Th1 and Th17 cells as the lesion becomes chronic ^{29,30}. Therefore, the long-term coexistence of these effector patterns is essential for infection control.

Clinical patterns of tegumentary leishmaniasis and their relationship with diagnostic tests

TL presents a broad spectrum of clinical manifestations, which vary according to the host's immune response to the parasite ³¹. Consequently, the clinical forms of localized cutaneous leishmaniasis and mucosal leishmaniasis predominantly display a hyperergic immune response. In contrast, cases of disseminated leishmaniasis and diffuse cutaneous leishmaniasis are characterized by an anergic immune response ¹⁰.

Hyperergic forms of tegumentary leishmaniasis

Localized cutaneous leishmaniasis. localized cutaneous leishmaniasis is characterized by a variable clinical pattern, ranging from a single lesion to multiple skin lesions ³². These lesions are typically papular, non-painful, and erythematous, commonly located in areas of the body exposed to the vector, such as the face, the auricular pavilion (widely known as "chiclero ulcer"), forearms, and legs ^{1,33}. The lesions often evolve into ulcerative forms, characterized by raised, thickened borders and friable granulation tissue, which may be accompanied by lymphadenopathy ³⁴. Figure 2 A-C illustrates the clinical characteristics of localized cutaneous leishmaniasis.

From an immunological perspective, this clinical form is predominantly mediated by effector CD4+ Th1 and Th17 cell responses 35. Over time, this response induces a progressive reduction in the number of amastigotes. For this reason, in chronic forms of the disease, visualizing amastigotes becomes increasingly challenging, both in direct examination and in histopathological assessment 21. Therefore, after 12 weeks of disease progression, molecular detection plays a crucial role in identifying the parasite ³⁶. This clinical form, located at the most hyperergic end of the disease spectrum, is characterized by intense and prolonged proinflammatory activity mediated by Th1 and Th17 effector patterns. This sustained immune response causes mucosal tissue destruction and a reduction in the number of amastigotes, which complicates their visualization using traditional techniques such as direct examination and histopathology. In this context, molecular techniques play a crucial role in detecting this variant. Additionally, the Montenegro test is a delayed hypersensitivity skin test used to assess cellular immune response to Leishmania spp. 37. It involves the intradermal injection of leishmanin and measuring induration after 48-72 hours 38. A positive result indicates prior exposure and an active immune response but does not distinguish between past and active infection 38. The test is useful in diagnosis and epidemiology and should be complemented with other methods, such as biopsy or PCR. A positive result can help keep this condition in diagnostic considerations.

Mucosal leishmaniasis. This form of leishmaniasis has a significant impact on patients' quality of life due to its physical sequelae and systemic involvement. The causative species of this condition belong to the *L. braziliensis* complex, which includes *L. braziliensis* and *L. peruviana*³⁹. Clinically, it primarily affects the nasal and oral mucosa, accompanied by subtle and insidious symptoms, including local pain, epistaxis, and pruritus. Hematogenous or lymphatic metastatic spread can involve the nasopharynx, leading to septal perforation, destruction of the uvula, palate, larynx, and pharynx ^{1,5,33,39}. These complications result in dysphagia, severe odynophagia, and cachexia in the most severe cases, with potential involvement of the upper respiratory tract that can be fatal ^{1,5,33,39}. Moreover, this condition may be worsened by secondary bacterial infections ¹. Figure 2D-F illustrates the clinical features of mucosal leishmaniasis.

This clinical form, located at the hyperergic end of the disease spectrum, is characterized by intense and prolonged pro-inflammatory activity mediated by Th1 and Th17 effector patterns ^{10,40}. This sustained immune response leads to mucosal tissue destruction and a decrease in the number of amastigotes, complicating their visualization through traditional techniques such as direct examination and histopathology ⁴¹. In this context, molecular techniques play a crucial role in detecting this variant. Furthermore, the Montenegro test can be instrumental, as a positive result helps maintain this pathology within the diagnostic considerations ⁴².

Table 1. Clinical and paraclinical features

Clinical presentation	Predominant Immune Response	Montenegro Test	Direct Smear Microscopy	Molecular test	Histopathological
Localized Cutaneous Leishmaniasis	Th1, Th17	Positive	Yes	Only, after three negative direct examinations	e Only, after three negative direct examinations
Mucosal Leishmaniasis	Th1, Th17	Positive	No	Yes	Yes
Disseminated Leishmaniasis	Th2	It could be positive	Yes	No	No
Diffuse Cutaneous Leishmaniasis	Th2	Negative	No	Yes	Yes

Anergic forms of cutaneous leishmaniasis

Disseminated leishmaniasis. disseminated leishmaniasis is a rare and endemic condition first described in the state of Bahia, Brazil, by Torres in 1920, where it remains endemic and neglected, particularly due to the high circulation of *L. braziliensis*⁴³. It has also been documented in other regions of Brazil, South America, Europe, and the Middle East ⁴⁴. Clinically, it is characterized by the appearance of dozens to hundreds of generalized polymorphic lesions, which coexist as various types of skin lesions, including acneiform eruptions. These inflammatory papules may be eroded or crusted and may also be presented as nodules, ulcers, and, rarely, vegetative lesions, often with involvement of the nasal mucosa ⁴⁵. Besides, the systemic manifestations include febrile peaks, asthenia, adynamia, and diaphoresis, suggesting a parasitic dissemination process through hematogenous spread ^{21,46}.

From an immunological perspective, this clinical form is characterized by a predominance of the Th2 response in the host, which induces an anti-inflammatory environment and activates Treg cells that suppress the cellular immune response, thereby facilitating parasite proliferation ^{9,21}. As a consequence of this immune response, tests such as the Montenegro test may yield ambiguous results, both positive and negative ⁴⁶. However, since this form is typically more anergic, direct examination is especially relevant, allowing visualization of *Leishmania* amastigotes.

Diffuse cutaneous leishmaniasis. Diffuse cutaneous leishmaniasis is an uncommon, chronic, and progressive condition that affects large areas of the skin. It is characterized by multiple papular, nodular, or plaque-like lesions that lack ulceration and may resemble lepromatous leprosy ^{47,48}. This condition is primarily associated with New World *Leishmania* species, such as *L. mexicana* and *L. amazonensis*, as well as *L. aethiopica*, which has been reported in countries like Ethiopia and Kenya ⁴⁹.

The dissemination of skin lesions occurs due to a reduction in cellular immunity. Studies have shown that *Leishmania* amastigotes stimulate immunosuppressive activities, leading to anergy. This immunological dysfunction has been linked to HIV infection, highlighting the association of diffuse cutaneous leishmaniasis with immunosuppression in the context of co-infection ^{1,49,50}.

Immunosuppression in these patients induces a pronounced anergic response, facilitating parasite proliferation ⁵¹. Notably, this anergy prevents lesion ulceration, resulting in the presentation of nodules instead ²¹. In this context, diagnostic tools such as the Montenegro skin test are ineffective ⁵². Given the absence of ulcerated lesions, diagnosis relies on skin biopsy for histopathological and molecular studies (Table 1).

Medical management

Currently, the first-line treatment for cutaneous leishmaniasis involves the use of pentavalent antimonial salts (Sb5+), such as meglumine antimoniate or N-methylglucamine antimoniate (Glucantime*) and sodium stibogluconate (Pentostam*), administered at a dose of 20 mg/kg/day intravenously or intramuscularly, as a single daily dose for 20 days, with a maximum of 15 mL (equivalent to 3 ampoules per day) ^{53,54}. The most common adverse effects of these drugs include acute inflammatory signs at the injection site, vomiting, abdominal pain, dizziness, fainting, myalgia, arthralgia, hepatotoxicity, nephrotoxicity, headache, and, in some cases, tachyarrhythmias and pancreatitis ⁵⁵.

Alternative treatment regimens include:

- 1. Miltefosine, administered orally at a dose of 1.5-2.5 mg/kg/day, with a maximum daily dose of 150 mg, for 28 days.
- 2. Pentamidine isethionate, administered intramuscularly or intravenously at a dose of 3-4 mg/kg/day, given as 4 to 10 doses on alternate days.
- 3. Liposomal amphotericin B, reserved for hospital use, is administered intravenously at a dose of 2-3 mg/kg/day, with a maximum daily dose of 250 mg. This formulation is preferred due to its lower nephrotoxicity compared to amphotericin B deoxycholate.
- 4. 4. The use of pentavalent antimonials in combination with an immunomodulator, such as oral pentoxifylline at 20 mg/kg/day for 30 days, combined with 400 mg of pentoxifylline every 8 hours for 28 days ^{21,55}.

Additionally, thermotherapy and/or cryotherapy, as well as intralesional infiltration with pentavalent antimonials, are reserved for specific cases. These include children under 10 kg and elderly patients with a single lesion smaller than 3 cm, not located in special anatomical sites, and always under the supervision of trained medical personnel ^{21,55}.

Emerging drug targets and therapeutic strategies for leishmaniasis include nanotechnologybased drug delivery systems and the exploitation of parasite-specific metabolic pathways. Liposomal encapsulation and nanoparticle formulations have shown great promise in enhancing the efficacy and bioavailability of antileishmanial drugs. For instance, challenges associated with the oral administration of pentamidine have been addressed by incorporating the drug into poly (lactic-co-glycolic acid) nanoparticles. These nanoparticles, prepared using a double-emulsion method, demonstrated successful in vitroand in vivoactivity in Leishmaniainfected BALB/c mice, offering a novel formulation with favorable pharmacokinetic and pharmacodynamic profiles. Similar nanoparticle-based strategies have also proven highly effective for the delivery of amphotericin B 56,57. In parallel, the purine salvage pathway has emerged as a valuable metabolic target, given that Leishmania parasites lack the enzymatic machinery required for de novo purine nucleotide synthesis. Instead, they rely on the purine salvage system, which involves the uptake of purine bases from the host through specific nucleoside transporters. A key enzyme in this pathway, nucleoside diphosphate kinase, has been targeted by various compounds. Notably, an analog of a multitarget receptor tyrosine kinase inhibitor, as well as a pyrrole-indolinone compound, has been shown to bind to L. major nucleoside diphosphate kinase and exhibit significant in vitro antileishmanial activity. The latter compound demonstrated potency and efficacy comparable to that of amphotericin B, supporting its potential as a scaffold for the development of new nucleoside diphosphate kinase inhibitors against *Leishmania* spp ⁵⁶.

Immunotherapy as a key strategy in the treatment of cutaneous leishmaniasis

Immunotherapy may play a pivotal role in treating cutaneous leishmaniasis, as the parasite employs strategies to evade the host immune response. These include inhibition of the membrane attack complex (C5-9), disruption of pathways such as TLR2/TLR4 and JAK/STAT, and modulation of key cellular processes like phagosome-lysosome fusion and intracellular pH regulation ⁵⁸. Consequently, drugs like Pentraxin-3 and Semaphorin-3E, which promote the activation of Th1 and Th17 effector patterns ^{59,60}, could be valuable in addressing anergic forms of this disease, such as diffuse cutaneous leishmaniasis and localized cutaneous leishmaniasis. These agents are likely to enhance the host's cellular immune response against the parasite.

Ikeogu et al. ⁵⁹, and Gupta et al. ⁶⁰, demonstrated that *Leishmania major* infection is associated with a marked upregulation of long pentraxin-3. Deletion of the *PTX-3* gene in C57BL/6 mice resulted in enhanced resistance to *L. major* infection, as evidenced by reduced lesion

size and parasite burden. This improvement correlated with a significantly augmented Th17/ IL-17 response. These findings suggest that neutralizing PTX-3 in infected individuals could potentially reduce disease severity. Supporting this, significantly higher pentraxin-3 expression has been observed in skin biopsy samples from patients with active lesions caused by *Leishmania braziliensis*, and chemotherapy has been shown to reduce pentraxin-3 expression in these individuals markedly.

On the other hand, Ikeogu et al-(.59), showed that Semaphorin-3E (Sema3E), a host molecule involved in axon guidance, is upregulated at the site of L. major infection. Targeted deletion of the Sema3 Egene led to an enhanced Th1 response, which may explain the increased resistance observed in smaller lesion size and lower parasite burden following L. major infection. This study suggests that neutralization of Sema3E in infected individuals could potentially improve disease outcomes.

On the other hand, pentoxifylline could prove beneficial in mucocutaneous forms of leishmaniasis, as its anti-TNF activity reduces phagocyte recruitment and, consequently, inflammation driven by these cells. Additionally, Sales et al. ⁶², conducted a randomized pilot clinical trial to evaluate the efficacy of an oral combination of miltefosine and pentoxifylline. A post hoc analysis from this study suggested a lower risk of adverse effects associated with this combination therapy.

In regions with a high burden of cutaneous leishmaniasis, immunoprophylaxis could play a crucial role in eradicating the disease. Currently, the following vaccines are in phase III clinical trials: Leishvaccine, Leishmune, CaniLeish, and Leish-Tec ⁶¹. Advanced proteomics and cellular immunology techniques have been employed to identify promising vaccine candidates for Leishmania. Mou et al. ⁶³, identified a dominant naturally processed peptide (PEPCK335-351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase. This peptide, and/or its native protein, elicited strong CD4⁺ T cell responses in infected mice and humans. Similar to the peptide, recombinant glycosomal phosphoenolpyruvate carboxykinase or a DNA construct expressing full-length glycosomal phosphoenolpyruvate carboxykinase induced strong, long-lasting, cross-species protection in both susceptible and resistant mouse models.

However, we consider this approach challenging in the short term, as the efficacy of these vaccines will depend on the antigens used and their relation to the *Leishmania* species from which they were derived. Therefore, the success of these vaccines will be closely tied to our molecular epidemiological understanding of the *Leishmania* species present in endemic regions. However, we consider that this strategy could be complex in the short term, as the effectiveness of these vaccines will depend on the antigen used and its relationship with the *Leishmania* species from which it was derived. Therefore, the success of these vaccines will be closely linked to our knowledge based on the molecular epidemiology of the species present in our territories.

Conclusions and future directions

Despite advances in understanding the immune response to *Leishmania* spp., significant challenges remain in the clinical management of the disease. Among the most pressing issues are early diagnosis, particularly in chronic hyperergic forms, where direct examination and histopathology show reduced sensitivity, as well as the high toxicity of conventional antimonial treatments. Additionally, there are considerable barriers to accessing molecular diagnostics and effective treatment in low-resource settings, where leishmaniasis remains a neglected tropical disease. These limitations not only hinder therapeutic success but also severely impact the quality of life of affected patients, especially those with mucosal and disseminated forms.

The evidence presented in this review highlights the central role of immune balance, particularly among Th1, Th2, and Th17 responses, in determining the clinical outcome of tegumentary leishmaniasis. This understanding opens the door to novel therapeutic

approaches, such as immunotherapy with agents capable of modulating immune responses, including pentoxifylline, pentraxin-3, and semaphorin 3E. Additionally, ongoing vaccine development efforts, such as Leishmune and Leish-Tec, offer promising prospects for prevention. However, their success will depend on conducting clinical trials tailored to the local epidemiology of *Leishmania* species. This will require robust international collaboration to overcome health system gaps in endemic regions.

References

- 1. Gabriel Á, Valério-Bolas A, Palma-Marques J, Mourata-Gonçalves P, Ruas P, Dias-Guerreiro T, et al. Cutaneous Leishmaniasis: The complexity of host's effective immune response against a polymorphic parasitic disease. J Immunol Res. 2019; 2019: 2603730. Doi: 10.1155/2019/2603730
- 2. Daga MK, Rohatgi I, Mishra R. Leishmaniasis. Indian J Crit Care Med. 2021; 25(Suppl 2): S166-70. Doi: 10.5005/jp-journals-10071-23844
- 3. Aronson NE, Magill AJ. 104 Leishmaniasis. In: Ryan ET, Hill DR, Solomon T, Aronson NE, Endy TP. Hunter's Tropical Medicine and Emerging Infectious Diseases. 10th ed. Elsevier; 2020. p. 776-98. Doi: 10.1016/B978-0-323-55512-8.00104-6
- 4. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6:750. Doi: 10.12688/f1000research.11120.1
- 5. Zambrano PI. Protocolo de vigilancia en salud pública LEISHMANIASIS Código 420, 430 y 440.
 Ministerio de Salud y Protección Social; 2020. Available from: https://mapaprocesos.esecarmenemiliaospina.gov.co/mapa/11.%20Gestio%CC%81n%20del%20riesgo/2.%20Subprocesos/13.%20Vigilancia%20 epidemiologica/4.%20Documentos%20de%20apoyo/GDR-S13-D29-V1Protocolo_Leishmaniasis.pdf
- Chivatá NJA. Informe de evento leishmaniasis cutánea, mucosa y visceral, Colombia, 2018. Instituto Nacional de Salud; 2019. Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/ LEISHMANIASIS 2018.pdf
- 7. Organización Panamericana de la Salud; Organización Mundial de la Salud. Leishmaniasis, informe epidemiológico de las Américas. OPS, OMS; 2022. Available from: https://iris.paho.org/bitstream/handle/10665.2/56833/OPASCDEVT220021_spa.pdf?sequence=1&isAllowed=y
- 8. da Silva SC, Brodskyn CI. The role of CD4 and CD8 T cells in human cutaneous leishmaniasis. Front Public Health. 2014;2:165. Doi: 10.3389/fpubh.2014.00165
- 9. Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581-92. Doi: 10.1038/nri.2016.72
- 10. Volpedo G, Pacheco-Fernandez T, Holcomb EA, Cipriano N, Cox B, Satoskar AR. Mechanisms of immunopathogenesis in cutaneous leishmaniasis and post kala-azar dermal leishmaniasis (PKDL). Front Cell Infect Microbiol. 2021;11:685296. Doi: 10.3389/fcimb.2021.685296
- 11. Engwerda CR, Ng SS, Bunn PT. The Regulation of CD4(+) T cell responses during protozoan infections. Front Immunol. 2014;5:498. Doi: 10.3389/fimmu.2014.00498
- 12. Bacellar O, Faria D, Nascimento M, Cardoso TM, Gollob KJ, Dutra WO, et al. Interleukin 17 production among patients with American cutaneous leishmaniasis. J Infect Dis. 2009;200(1):75-8. Doi: 10.1086/599380
- 13. Shahi M, Mohajery M, Shamsian SAA, Nahrevanian H, Yazdanpanah SMJ. Comparison of Th1 and Th2 responses in non-healing and healing patients with cutaneous leishmaniasis. Rep Biochem Mol Biol. 2013;1(2):43-8.
- 14. Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol. 2022;13:945063. Doi: 10.3389/fimmu.2022.945063
- 15. Costa-da-Silva AC, De Oliveira ND, Ferreira JRM, Guimarães-Pinto K, Freire-de-Lima L, Morrot A, et al. Immune responses in leishmaniasis: an overview. Trop Med Infect Dis. 2022;7(4):54. Doi: 10.3390/tropicalmed7040054

- 16. Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 cell and inflammatory infiltrate interactions in cutaneous leishmaniasis: unraveling immunopathogenic mechanisms. Immune Netw. 2024;24(2):e14. Doi: 10.4110/in.2024.24.e14
- 17. Alimohmmadian MH, Ajdary S, Bahrami F. A historic review of the role of CD4+ T-cell subsets in development of the immune responses against cutaneous and visceral leishmaniases. Iran Biomed J. 2022;26(2):99-109. Doi: 10.52547/ibj.26.2.99
- 18. Griffin GK, Newton G, Tarrio ML, Bu D-X, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-a sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287-99. Doi: 10.4049/jimmunol.1200385
- 19. Fan X, Shu P, Wang Y, Ji N, Zhang D. Interactions between neutrophils and T-helper 17 cells. Front Immunol. 2023;14:1279837. Doi: 10.3389/fimmu.2023.1279837
- 20. Serrano-Coll H, Cardona-Castro N, Ramos AP, Llanos-Cuentas A. Innate immune response: ally or enemy in cutaneous leishmaniasis? Pathog Dis. 2021;79(5):ftab028. Doi: 10.1093/femspd/ftab028
- 21. Serrano-Coll H, Ramos AP, Cardona-Castro N, Llanos-Cuentas A. Leishmaniasis cutánea: una mirada a la clínica, diagnóstico y tratamiento de esta enigmática enfermedad. Piel (Barc). 2021;36(5):317-24. Doi: 10.1016/j.piel.2020.06.012
- 22. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th Edition. Philadelphia: Elsevier/Saunders; 2015.
- 23. Almeida FS, Vanderley SER, Comberlang FC, Gomes deAA, Cavalcante-Silva LHA, Dos Santos SE, et al. Leishmaniasis: immune cells crosstalk in macrophage polarization. Trop Med Infect Dis. 2023;8(5):276. Doi: 10.3390/tropicalmed8050276
- 24. Accioly BCMC, de Freitas ESR, de Andrade CMK, Soarez BSLL, Oliveira SDGF, Felinto de BME, et al. Chemokine receptors on human regulatory T cells during cutaneous leishmaniasis. Parasite Immunol. 2023;45(3):e12966. Doi: 10.1111/pim.12966
- 25. Nedoszytko B, Lange M, Sokolowska-Wojdylo M, Renke J, Trzonkowski P, Sobjanek M, et al. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postepy Dermatol Alergol. 2017;34(4):285-94. Doi: 10.5114/ada.2017.69305
- 26. Coutinho deOB, da Silva AA, de Andrade CMK, Felinto deBME, Accioly BCMC, Silveira deMVL, et al. Central and effector memory human CD4+ and CD8+ T Cells during cutaneous leishmaniasis and after in vitro stimulation with Leishmania (viannia) braziliensis Epitopes. Vaccines. 2023;11(1):158. Doi: 10.3390/vaccines11010158
- 27. Novais FO, Scott P. CD8+ T cells in cutaneous leishmaniasis: the good, the bad, and the ugly. Semin Immunopathol. 2015;37(3):251-9. Doi: 10.1007/s00281-015-0475-7
- 28. Gomes-Silva A, de Cássia BR, Dos Santos NR, Amato VS, da Silva MM, Oliveira-Neto MP, et al. Can interferon-gamma and interleukin-10 balance be associated with severity of human Leishmania (viannia) braziliensis infection? Clin Exp Immunol. 2007;149(3):440-4. Doi: 10.1111/j.1365-2249.2007.03436.x
- 29. Schmidt A, Zhang X-M, Joshi RN, Iqbal S, Wahlund C, Gabrielsson S, et al. Human macrophages induce CD4(+)Foxp3(+) regulatory T cells via binding and re-release of TGF-ß. Immunol Cell Biol. 2016;94(8):747-62. Doi: 10.1038/icb.2016.34
- 30. AlMoshary M. Investigating the macrophage polarization in cutaneous leishmaniasis. J Vector Borne Dis. 2025. Doi: $10.4103/JVBD.JVBD_174_24$
- 31. Saidi N, Blaizot R, Prévot G, Aoun K, Demar M, Cazenave PA, et al. Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Front Immunol. 2023;14:1134020. Doi: 10.3389/fimmu.2023.1134020
- 32. Scorza BM, Carvalho EM, Wilson ME. Cutaneous manifestations of human and murine leishmaniasis. Int J Mol Sci. 2017;18(6):1296. Doi: 10.3390/ijms18061296

- 33. Instituto Nacional de Salud. Protocolo de Vigilancia de Leishmaniasis versión 6. Colombia: INS; 2024. Available from: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro Leishmaniasis.pdf
- 34. Sechi A, Neri I, Patrizi A, Di Altobrando A, Clinca R, Caposiena CRD, et al. Ultrasound patterns of localized cutaneous leishmaniasis and clinical correlations. J Ultrasound. 2022;25(2):343-8. Doi: 10.1007/s40477-020-00537-9
- 35. Díaz NL, Zerpa O, Tapia FJ. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis. Mem Inst Oswaldo Cruz. 2013;108(4):446-52. Doi: 10.1590/S0074-0276108042013008
- 36. Ministerio de Salud y Protección Social. Lineamientos para la atención clínica integral de leishmaniasis en Colombia. Colombia: Ministerio de Salud y Protección Social; 2018. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/PAI/Lineamientos-leishmaniasis.pdf
- 37. José FF, da Silva IM, Araújo MI, Almeida RP, Bacellar O, Carvalho EM. Avaliação do poder sensibilizante da reação de Montenegro. Rev Soc Bras Med Trop. 2001;34(6):537-42. Doi: 10.1590/S0037-86822001000600007
- 38. Carstens-Kass J, Paulini K, Lypaczewski P, Matlashewski G. A review of the leishmanin skin test: a neglected test for a neglected disease. PLoS Negl Trop Dis. 2021; 15(7): e0009531. Doi: 10.1371/journal. pntd.0009531
- 39. Pinart M, Rueda J-R, As RG, Pinzón-Flórez CE, Osorio-Arango K, Silveira MEAN, et al. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst Rev. 2020;8(8). Doi: 10.1002/14651858.CD004834.pub3
- 40. Oliveira GL, Vallejo PAF, Siquiera MFA, Silvério EAE, Reis CMG, de Melo RD, et al. Expression profile of genes related to the Th17 pathway in macrophages infected by Leishmania major and Leishmania amazonensis: the use of gene regulatory networks in modeling this pathway. Front Cell Infect Microbiol. 2022;12:826523. Doi: 10.3389/fcimb.2022.826523
- 41. Cincura C, Costa RS, De Lima CMF, Oliveira-Filho J, Novis PR, Carvalho EM, et al. Assessment of immune and clinical response in patients with mucosal leishmaniasis treated with pentavalent antimony and pentoxifylline. Trop Med Infect Dis. 2022;7(11):383. Doi: 10.3390/tropicalmed7110383
- 42. Serrano-Coll H, Aristizábal-Parra L, Wan E, López YD, Tobón AM. Leishmaniasis americana tegumentaria: series de casos describiendo una enigmática y olvidada enfermedad. CES Med. 2022;36(3):106-14. Doi: 10.21615/cesmedicina.6963
- 43. Membrive NA, Kazuma FJ, Verzignassi TGS, Vieira JJT, Reinhold-Castro KR, Teodoro U. Disseminated cutaneous leishmaniasis caused by Leishmania braziliensis in Southern Brazil. Rev Inst Med Trop Sao Paulo. 2017;59:e37. Doi: 10.1590/s1678-9946201759037
- 44. Hashiguchi Y, Gomez EL, Kato H, Martini LR, Velez LN, Uezato H. Diffuse and disseminated cutaneous leishmaniasis: clinical cases experienced in Ecuador and a brief review. Trop Med Health. 2016;44:2. Doi: 10.1186/s41182-016-0002-0
- 45. Machado PRL, Lago A, Cardoso TM, Magalhaes A, Carvalho LP, Lago T, et al. Disseminated Leishmaniasis, a severe form of Leishmania braziliensis infection. Emerg Infect Dis. 2024;30(3):510-8. Doi: 10.3201/eid3003.230786
- 46. Machado GU, Ventin PF, Lima MPR. Disseminated leishmaniasis: clinical, pathogenic, and therapeutic aspects. An Bras Dermatol. 2019;94(1):9-16. Doi: 10.1590/abd1806-4841.20198775
- 47. Kumari A, Balai M, Gupta LK, Khare AK, Mittal AK, Mehta S. Diffuse cutaneous leishmaniasis in an immunocompromised patient resembling histoid Hansen's disease. Indian Dermatol Online J. 2018;9(6):452-4. Doi: 10.4103/idoj.IDOJ_34_18
- 48. Sinha S, Fernández G, Kapila R, Lambert WC, Schwartz RA. Diffuse cutaneous leishmaniasis associated with the immune reconstitution inflammatory syndrome. Int J Dermatol. 2008;47(12):1263-70. Doi: 10.1111/j.1365-4632.2008.03804.x

- 49. van Henten S, Adriaensen W, Fikre H, Akuffo H, Diro E, Hailu A, et al. Cutaneous leishmaniasis due to Leishmania aethiopica. EClinicalMedicine. 2018;6:68-81. Doi: 10.1016/j.eclinm.2018.12.009
- 50. Yadav N, Madke B. Case report: diffuse cutaneous leishmaniasis successfully treated with a combination of oral rifampicin and fluconazole. Am J Trop Med Hyg. 2023; 109(2): 315-8. Doi: 10.4269/ajtmh.23-0170
- 51. Gollob KJ, Viana AG, Dutra WO. Immunoregulation in human American leishmaniasis: balancing pathology and protection. Parasite Immunol. 2014; 36(8): 367-76. Doi: 10.1111/pim.12100
- 52. Freites CO, Gundacker ND, Pascale JM, Saldaña A, Diaz-Suarez R, Jimenez G, et al. First Case of Diffuse Leishmaniasis Associated With Leishmania panamensis. Open Forum Infect Dis. 2018; 5(11): ofy281. Doi: 10.1093/ofid/ofy281
- 53. de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022; 23(6): 823-40. Doi: 10.1007/s40257-022-00726-8
- 54. Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, et al. Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am J Trop Med Hyg. 2017; 96(1): 24-45. Doi: 10.4269/ajtmh.16-84256
- 55. Organización Panamericana de la Salud. Síntesis de evidencia y recomendaciones: directrices para el tratamiento de las leishmaniasis en la Región de las Américas. Rev Panam Salud Publica. 2023; 47: e43. Doi: 10.26633/RPSP.2023.43.
- 56. Brindha J, Balamurati MM, Chanda K. An overview on the therapeutics of neglected infectious diseases-leishmaniasis and chagas diseases. Front Chem. 2021; 9. Doi: 10.3389/fchem.2021.622286
- 57. Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, et al. PLGA-based nanomedicine: history of advancement and development in clinical applications of multiple diseases. Pharmaceutics. 2022; 14(12): 2728. Doi: 10.3390/pharmaceutics14122728.
- 58. Lauletta LJA, Lopes CJM, Queiroz IT, Goto H. Review of the current treatments for leishmaniases. Res Rep Trop Med. 2012;3:69-77. Doi: 10.2147/RRTM.S24764.
- 59. Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, et al. Semaphorin 3E promotes susceptibility to Leishmania major infection in mice by suppressing CD4+ Th1 cell response. J Immunol. 2021; 206(3): 588-98. Doi: 10.4049/jimmunol.2000516.
- 60. Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, et al. The long Pentraxin 3 (PTX3) suppresses immunity to cutaneous leishmaniasis by regulating CD4+ T helper cell response. Cell Rep. 2020; 33(11): 108513. Doi: 10.1016/j.celrep.2020.108513.
- 61. Dinc R. Leishmania vaccines: the current situation with its promising aspect for the future. Korean J Parasitol. 2022; 60(6): 379-91. Doi: 10.3347/kjp.2022.60.6.379.
- 62. Sales MS, Holanda BD, Cortes RB, de Oliveira CMJ, Magalhães FGS, de Araujo PLI, et al. A pilot randomized clinical trial: oral miltefosine and pentavalent antimonials associated with pentoxifylline for the treatment of american tegumentary leishmaniasis. Front Cell Infect Microbiol. 2021; 11: 700323. Doi: 10.3389/fcimb.2021.700323.
- 63. Mou Z, Li J, Boussoffara T, Kishi H, Hamana H, Ezzati P, et al. Identification of broadly conserved crossspecies protective Leishmania antigen and its responding CD4+ T cells. Sci Transl Med. 2015; 7(310): 310ra167. Doi: 10.1126/scitranslmed.aac5477.