Immunotherapy and gene therapy as novel treatments for cancer
Main Article Content
- cancer
- immunotherapy
- monoclonal antibody
- regulatory T cells
- gene therapy
Dzivenu OK, O’Donnell TJ. Cancer and the immune system: the vital connection. Cancer Research Institute: New York; 2003. Accesed: 30 September 2016. Available from: https://www.cancerresearch.org/patients/answers-and-support/vital-connection.
Finn O. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012; 23(Suppl 8): viii6-9. DOI: https://doi.org/10.1093/annonc/mds256
Sathyanarayanan V, Neelapu S. Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol Oncol. 2015; 9(10): 2043-53. DOI: https://doi.org/10.1016/j.molonc.2015.10.009
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4): 252-64. DOI: https://doi.org/10.1038/nrc3239
Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014; 2: 27. DOI: https://doi.org/10.1186/2052-8426-2-27
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015; 35 (Suppl): S185-98. DOI: https://doi.org/10.1016/j.semcancer.2015.03.004
Pennock GK, Chow LQ. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist. 2015; 20(7): 812-22. DOI: https://doi.org/10.1634/theoncologist.2014-0422
Jacobs J, Smits E, Lardon F, Pauwels P, Deschoolmeester V. Immune checkpoint modulation in colorectal cancer: What's new and what to expect. J Immunol Res. 2015; 2015: 158038. DOI: https://doi.org/10.1155/2015/158038
Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014; 27: 16-25. DOI: https://doi.org/10.1016/j.coi.2014.01.004
Pandya PH, Murray ME, Pollok KE, Renbarger JL. The immune system in cancer pathogenesis: Potential therapeutic approaches. J Immunol Res. 2016; 2016:4273943. DOI: https://doi.org/10.1155/2016/4273943
Grivennikov SI1, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6): 883-99. DOI: https://doi.org/10.1016/j.cell.2010.01.025
Messerschmidt JL, Prendergast GC, Messerschmidt GL. How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: Helping nonimmunologists decipher recent advances. Oncologist. 2016; 21(2): 233-43. DOI: https://doi.org/10.1634/theoncologist.2015-0282
Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016; 164(6): 1233-47. DOI: https://doi.org/10.1016/j.cell.2016.01.049
Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol. 2006; 6(4): 295-07. DOI: https://doi.org/10.1038/nri1806
Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016; 28(8): 401-09. DOI: https://doi.org/10.1093/intimm/dxw025
Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014; 27: 1-7. DOI: https://doi.org/10.1016/j.coi.2013.12.005
Oleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: The role of regulatory T cells in cancer progression. Clin Exp Immunol. 2013; 171(1): 36-45. DOI: https://doi.org/10.1111/j.1365-2249.2012.04657.x
Pernot S, Terme M, Voron T, Colussi O, Marcheteau E, Tartour E, et al. Colorectal cancer and immunity: What we know and perspectives. World J Gastroenterol. 2014; 20(14): 3738-50. DOI: https://doi.org/10.3748/wjg.v20.i14.3738
Amin M, Lockhart AC. The potential role of immunotherapy to treat colorectal cancer. Expert Opin Investig Drugs. 2015; 24(3): 329-44. DOI: https://doi.org/10.1517/13543784.2015.985376
Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008; 8(7): 523-32. DOI: https://doi.org/10.1038/nri2343
Guzmán-Flores JM, Portales-Pérez DP. Mecanismos de supresión de las células T reguladoras (Treg). Gac Med Mex. 2013; 149: 630-8.
Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells. Cell Death Differ. 2007; 14: 2076-84. DOI: https://doi.org/10.1038/sj.cdd.4402220
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015; 33(17): 1974-82. DOI: https://doi.org/10.1200/JCO.2014.59.4358
Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017; 24(1): 26. DOI: https://doi.org/10.1186/s12929-017-0329-9
Ceeraz S, Nowak EC, Burns CM, Noelle RJ. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease. Arthritis Res Ther. 2014; 16: 469. DOI: https://doi.org/10.1186/s13075-014-0469-1
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017; 47(5):765-779. DOI: https://doi.org/10.1002/eji.201646875
Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer. 2016; 4:3-3. DOI: https://doi.org/10.1186/s40425-016-0107-3
Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist. 2008; 13(Suppl l4): 2-9. DOI: https://doi.org/10.1634/theoncologist.13-S4-2
Gelao L, Criscitiello C, Esposito A, Goldhirsch A, Curigliano G. Immune checkpoint blockade in cancer treatment: A double-edged sword cross-targeting the host as an “Innocent bystander”. Toxins. 2014; 6(3): 914-33. DOI: https://doi.org/10.3390/toxins6030914
Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013; 13:5.
Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001; 1(3): 220-28. DOI: https://doi.org/10.1038/35105024
Pico YC, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med. 2015; 21(8): 482-91. DOI: https://doi.org/10.1016/j.molmed.2015.05.005
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 2015; 27(4): 450-61. DOI: https://doi.org/10.1016/j.ccell.2015.03.001
Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PDL1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013; 19(19): 524-35. DOI: https://doi.org/10.1158/1078-0432.CCR-13-0143
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016; 39(1): 98-106. DOI: https://doi.org/10.1097/COC.0000000000000239
Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity. 2016; 44(5): 1069-78. DOI: https://doi.org/10.1016/j.immuni.2016.04.023
Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015; 33(10): 1191-6. DOI: https://doi.org/10.1200/JCO.2014.56.6018
Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016; 21: 462-73. DOI: https://doi.org/10.1007/s10147-016-0959-z
Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated Melanoma. N Engl J Med. 2015; 373(13): 1270-1. DOI: https://doi.org/10.1056/NEJMc1509660
Andrews A. Treating with checkpoint inhibitor. Figure $1 million per patient. Am Health Drug Benefits. 2015; 8: 9.
Blagosklonny MV. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene. 2004; 23(16): 2967-75. DOI: https://doi.org/10.1038/sj.onc.1207520
Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016; 99(Pt A): 113-128. DOI: https://doi.org/10.1016/j.addr.2015.05.009
Wirth T, Yla-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014; 2(2): 149-62 DOI: https://doi.org/10.3390/biomedicines2020149
Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev. 2004; 56(1): 53-02. DOI: https://doi.org/10.1124/pr.56.1.3
Smee DF, Martin JC, Verheyden JP, and Matthews TR. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine. Antimicrob Agents Chemother. 1983; 23(5): 676-82. DOI: https://doi.org/10.1128/AAC.23.5.676
Ingemarsdotter CK, Poddar C, Mercier C, Patzel V, Lever AM. Expression of Herpes Simplex Virus thymidine kinase/ganciclovir by RNA trans-splicing induces selective killing of HIV-producing cells. Mol Ther Nucleic Acids. 2017; 7: 140-154. DOI: https://doi.org/10.1016/j.omtn.2017.03.004
Rojas-Martinez A, Wyde PR, Montgomery CA, Chen SH, Woo SL, Aguilar-Cordova E. Distribution, persistency, toxicity, and lack of replication of an E1A-deficient adenoviral vector after intracardiac delivery in the cotton rat. Cancer Gene Ther. 1998; 5(6): 365-70.
Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V. Suicide gene therapy in cancer: where do we stand now?. Cancer Lett. 2012; 324(2): 160-70. DOI: https://doi.org/10.1016/j.canlet.2012.05.023
Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther. 1999; 10(7): 1239-49. DOI: https://doi.org/10.1089/10430349950018229
Rojas-Martínez A, Manzanera AG, Sukin SW, Esteban-María J, González-Guerrero JF, Gomez-Guerra L, et al. Intraprostatic distribution and long term follow-up after AdV-tk + prodrug as neoadjuvant to surgery in patients with prostate cancer. Cancer Gene Ther. 2013; 20(11): 642-49. DOI: https://doi.org/10.1038/cgt.2013.56
Trask TW, Trask RP, Aguilar-Córdova E, Shine HD, Wyde PR, Goodman JC, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with recurrent malignant brain tumors. Mol Ther. 2000; 1(2): 195-03. DOI: https://doi.org/10.1006/mthe.2000.0030
Zhao F, Tian J, An L, Yang K. Prognostic utility of gene therapy with herpes simplex virus thymidine kinase for patients with high-grade malignant gliomas: a systematic review and meta-analysis. J Neurooncol. 2014; 118(2): 239-46. DOI: https://doi.org/10.1007/s11060-014-1444-z
de Melo SM, Bittencourt S, Ferrazoli EG, da Silva CS, da Cunha FF, da Silva FH, et al. The anti-tumor effects of adipose tissue mesenchymal stem cell transduced with HSV-TK gene on U-87-driven brain tumor. PLoS One. 2015; 10(6): e0128922. DOI: https://doi.org/10.1371/journal.pone.0128922
Hasenburg A, Fischer DC, Tong XW, Rojas-Martínez A, Nyberg-Hoffman C, Orlowska-Volk M, et al. Histologic and immunohistochemical analysis of tissue response to adenovirus-mediated herpes simplex thymidine kinase gene therapy of ovarian cancer. Int J Gynecol Cancer. 2002; 12(1): 66-73. DOI: https://doi.org/10.1136/ijgc-00009577-200201000-00011
Rawlinson JW, Vaden K, Hunsaker J, Miller DF, Nephew KP. Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir. Gene Ther Mol Biol. 2013; 15: 120-130.
Tang W, He Y, Zhou S, Ma Y, Liu G. A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res. 2009; 28(1): 155. DOI: https://doi.org/10.1186/1756-9966-28-155
Pan JG, Luo RQ, Zhou X, Han RF, Zeng GW. Potent antitumor activity of the combination of HSV-TK and endostatin by adeno-associated virus vector for bladder cancer in vivo. Clin Lab. 2013; 59(9-10): 1147-58. DOI: https://doi.org/10.7754/Clin.Lab.2012.121109
Chen D, Tang Q. An experimental study on cervix cancer with combination of HSV-TK/GCV suicide gene therapy system and Co radiotherapy. BMC Cancer. 2010; 10: 609-20. DOI: https://doi.org/10.1186/1471-2407-10-609
Abate DD, García LR, Sumoy L, Fillat C. Cell cycle control pathways act as conditioning factors for TK/GCV sensitivity in pancreatic cancer cells. Biochim Biophys Acta. 2010; 1803(10): 1175-85. DOI: https://doi.org/10.1016/j.bbamcr.2010.06.009
Aguilar LK, Shirley LA, Chung VM, Marsh CL, Walker J, Coyle W, et al. Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma. Cancer Immunol Immunother. 2015; 64(6): 727-36. DOI: https://doi.org/10.1007/s00262-015-1679-3
Zhu R, Chen D, Lin D, Lu F, Yin J, Li N. Adenovirus vector-mediated herpes simplex virus-thymidine kinase gene/ganciclovir system exhibits anti-tumor effects in an orthotopic hepatocellular carcinoma model. Pharmazie. 2014; 69(7): 547-52.
Ji N, Weng D, Liu C, Gu Z, Chen S, Guo Y, et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 2016; 7(4): 4369-4378. DOI: https://doi.org/10.18632/oncotarget.6737
Hassan W, Sanford MA, Woo SL, Chen SH, Hall SJ. Prospects for herpes-simplex-virus thymidine-kinase and cytokine gene transduction as immunomodulatory gene therapy for prostate cancer. World J Urol. 2000; 18(2): 130-35. DOI: https://doi.org/10.1007/s003450050185
Kubo M, Satoh T, Tabata KI, Tsumura H, Iwamura M, Baba S, et al. Enhanced central memory cluster of differentiation 8+ and tumor antigen-specific T cells in prostate cancer patients receiving repeated in situ adenovirus-mediated suicide gene therapy. Mol Clin Oncol. 2015; 3(3): 515-21. DOI: https://doi.org/10.3892/mco.2015.519
Barba D, Hardin J, Sadelain M, Gage, FH. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci U S A. 1994; 91(10): 348-52. DOI: https://doi.org/10.1073/pnas.91.10.4348
Cho HS, Lee HR, Kim MK. Bystander-mediated regression of murine neuroblastoma via retroviral transfer of the HSV-TK gene. J Korean Med Sci. 2004; 19(1): 107-12. DOI: https://doi.org/10.3346/jkms.2004.19.1.107
Aguilar LK, Guzik BW, Aguilar-Cordova E. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development. J Cell Biochem. 2011; 112: 1969-77. DOI: https://doi.org/10.1002/jcb.23126
Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016; 18(8): 1137-45. DOI: https://doi.org/10.1093/neuonc/now002
Ayala G, Satoh T, Li R, Shalev M, Gdor Y, Aguilar-Cordova E, et al. Biological response determinants in HSV-tk + ganciclovir gene therapy for prostate cancer. Mol Ther. 2006; 13(4): 716-28. DOI: https://doi.org/10.1016/j.ymthe.2005.11.022
Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol. 2011; 6(3): 357-74. DOI: https://doi.org/10.2217/fvl.11.6
Higashi K, Hazama S, Araki A, Yoshimura K, Iizuka N, Yoshino S, et al. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model. Int J Oncol. 2014; 45(4): 1412-20. DOI: https://doi.org/10.3892/ijo.2014.2557
Boieri M, Ulvmoen A, Sudworth A, Lendrem C, Collin M, Dickinson AM, et al. IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic leukemia and delay leukemia development in vivo. Oncoimmunology. 2017; 6(3): e1274478. DOI: https://doi.org/10.1080/2162402X.2016.1274478
Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, Chong H. Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer. 1997; 71(2): 267-74. DOI: https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<267::AID-IJC23>3.0.CO;2-D
Satoh T, Irie A, Egawa S, Baba S. In situ gene therapy for prostate cancer. Curr Gene Ther. 2005; 5(1): 111-9. DOI: https://doi.org/10.2174/1566523052997523
Gao Q, Chen C, Ji T, Wu P, Han Z, Fang H, et al. A systematic comparison of the anti-tumoural activity and toxicity of the three Adv-TKs. PLoS One. 2014; 9(4): e94050. DOI: https://doi.org/10.1371/journal.pone.0094050
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003; 4: 346-58 DOI: https://doi.org/10.1038/nrg1066
Shin SP, Seo HH, Shin JH, Park HB, Lim DP, Eom HS, et al. Adenovirus expressing both thymidine kinase and soluble PD1 enhances antitumor immunity by strengthening CD8 T-cell response. Mol Ther. 2013; 21(3): 688-95. DOI: https://doi.org/10.1038/mt.2012.252
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013; 13(4): 227-42. DOI: https://doi.org/10.1038/nri3405
Nirschl CJ, Drake CG. Molecular pathways: co-expression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013; 19(18): 4917-24. DOI: https://doi.org/10.1158/1078-0432.CCR-12-1972
ClinicalTrials.gov. Disponible en http://clinicaltrials.gov. 2017. Accesed: Abril 2017..
Downloads
Accepted 2017-09-09
Published 2017-09-29

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use