Preliminary identification of pathogenic variants in an afro-Colombian raizal family with risk factors for glaucoma
Abstract
Objective:
To identify pathogenic variants in an Afro-Colombian Raizal family with risk factors for glaucoma.
Methods:
In the present study, whole exome sequencing was performed on seven members of a Raizal family from the archipelago of San Andrés, Providencia, and Santa Catalina, in the Caribbean region of Colombia. Four of them had been diagnosed with glaucoma. In addition, two healthy volunteers from the island were included.
Results:
Of the 198 single nucleotide variants associated with glaucoma previously reported by the DisGeNET database, four were identified in members of the Raizal family: rs11938093, rs7336216, rs3817672, and rs983034. Furthermore, single nucleotide variant rs983034 was identified in the Wnt ligand secretion mediator gene in all family members but not in healthy volunteers. Notably, WLS dysfunctions have been linked to pathology in the trabecular meshwork of the eye. The trabecular meshwork is an important regulator of the outflow of aqueous humor that maintains intraocular pressure (intraocular pressure) at normal levels. Damage to trabecular meshwork is associated with ocular hypertension, which leads to glaucoma progression. In relation to the other single nucleotide variants identified, their presence was confirmed in some members of the Raizal family. However, it is still unclear the pathophysiological cause that associates these single nucleotide variants with glaucoma.
Conclusions:
It was possible to identify four non-synonymous single nucleotide variants that predict significant damage to the structure and function of genes associated with glaucoma pathology in an Afro-Colombian
Authors
Downloads
Keywords
- Glaucoma
- African Continental Descent Group
- Whole Exome Sequencing
- Intraocular Pressure
- Trabecular Mesh
- Ocular Hypertension
- Blindness
References
Prum B E J, Rosenberg L F, Gedde S J, Mansberger S L, Stein J D, Moroi S E, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern Guidelines. Ophthalmology. 2016; 123(1): 41-111. https://doi.org/10.1016/j.ophtha.2015.10.053 PMid:26581556
Hyman L, Wu S Y, Connell A M, Schachat A, Nemesure B, Hennis A, Leske M C. Prevalence and causes of visual impairment in The Barbados Eye Study. Ophthalmology, 2001; 108(10): 1751-1756. https://doi.org/10.1016/S0161-6420(01)00590-5
Tielsch J M, Sommer A, Witt K, Katz J, Royall R M. Blindness, and visual impairment in an American urban population. The Baltimore Eye Survey. Archives of Ophthalmology. 1990; 108(2): 286-290. https://doi.org/10.1001/archopht.1990.01070040138048 PMid:2271016
Öhnell H, Bengtsson B, Heijl A. Making a Correct Diagnosis of Glaucoma: Data From the EMGT. Journal of Glaucoma, 2019; 28(10): 859-864. https://doi.org/10.1097/IJG.0000000000001342 PMid:31567622 PMCid:PMC6776427
Friedman D S, Wolfs R C W, O'Colmain B J, Klein B E, Taylor H R, West S, et al. Prevalence of open-angle glaucoma among adults in the United States. Archives of Ophthalmology. 2004; 122(4), 532-538. https://doi.org/10.1001/archopht.122.4.532 PMid:15078671 PMCid:PMC2798086
Varma R, Ying-Lai M, Francis B A, Nguyen B B-T, Deneen J, Wilson M R. et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2004; 111(8): 1439-1448. https://doi.org/10.1016/j.ophtha.2004.01.025 PMid:15288969
Von-Bischhoffshausen F, Jiménez-Román J. 2019 Guía latinoamericana de glaucoma primario de ángulo abierto. 2019. https://paao.org/wp-content/uploads/2016/05/Guia-Glaucoma-2019-final-para-www.pdf.
Cantor E, Méndez F, Rivera C, Castillo A, Martínez-Blanco A. Blood pressure, ocular perfusion pressure and open-angle glaucoma in patients with systemic hypertension. Clinical Ophthalmology. 2018; 12: 1511- 1517. https://doi.org/10.2147/OPTH.S165747 PMid:30197496 PMCid:PMC6112796
Rivera C E, Cantor E, Castillo A, Martínez A, Newball L, Rueda J C, et al. (2020). Prevalence of Primary Open Angle Glaucoma among Patients with Diagnosis of Systemic Hypertension and Diabetes Mellitus: The Colombian Glaucoma Study. Open Journal of Ophthalmology. 2020; 10(2): 99-114. https://doi.org/10.4236/ojoph.2020.102012
Bushnell B, Rood J, Singer E. BBMerge - Accurate paired shotgun read merging via overlap. PLoS ONE. 2017; 12(10): e0185056. https://doi.org/10.1371/journal.pone.0185056 PMid:29073143 PMCid:PMC5657622
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589-95. https://doi.org/10.1093/bioinformatics/btp698 PMid:20080505 PMCid:PMC2828108
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10(2): giab008. https://doi.org/10.1093/gigascience/giab008 PMid:33590861 PMCid:PMC7931819
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20: 1297-303. https://doi.org/10.1101/gr.107524.110 PMid:20644199 PMCid:PMC2928508
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16): e164. https://doi.org/10.1093/nar/gkq603 PMid:20601685 PMCid:PMC2938201
Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS, Gonzalez JN, Gibson D, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019;47(D1): D853-D858. https://doi.org/10.1093/nar/gky1095 PMid:30407534 PMCid:PMC6323953
Wang LJ, Zhang CW, Su SC, Chen HH, Chiu YC, Lai Z, Bouamar H, Ramirez AG, Cigarroa FG, Sun LZ, Chen Y. An ancestry informative marker panel design for individual ancestry estimation of Hispanic population using whole exome sequencing data. BMC Genomics. 2019;20(Suppl 12):1007. https://doi.org/10.1186/s12864-019-6333-6 PMid:31888480 PMCid:PMC6936141
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-8. https://doi.org/10.1093/bioinformatics/btr330 PMid:21653522 PMCid:PMC3137218
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2): giab008. https://doi.org/10.1093/gigascience/giab008 PMid:33590861 PMCid:PMC7931819
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59.https://doi.org/10.1093/genetics/155.2.945 PMid:10835412 PMCid:PMC1461096
Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17(1):44-53. https://doi.org/10.1111/1755-0998.12549 PMid:27401132
Josse J, Husson F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. Journal of Statistical Software; 2016; 1(1). https://doi.org/10.18637/jss.v070.i01
Dray S, Dufour A-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software. 2007. 1(4). https://doi.org/10.18637/jss.v022.i04
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 2016.https://doi.org/10.1007/978-3-319-24277-4
Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-5. https://doi.org/10.1038/ng.2892 PMid:24487276 PMCid:PMC3992975
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2018 Oct 29. https://doi.org/10.1093/nar/gky1016 PMid:30371827 PMCid:PMC6323892
Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, Scott E, Shah I, Stenson PD, Gleeson J, Cooper DN, Quintana-Murci L, Zhang SY, Abel L, Casanova JL. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109-10. https://doi.org/10.1038/nmeth.3739 PMid:26820543 PMCid:PMC4980758
Meneses P M, Landrián I B, Pérez A L. Comportamiento clínico y epidemiológico del glaucoma primario de ángulo abierto en familiares de pacientes glaucomatosos. Mediciego. 2011;17(2).
Márquez-Pérez A I. Culturas migratorias en el Caribe colombiano: El caso de los isleños raizales de las islas de Old Providence y Santa Catalina. Memorias Rev Digit Hist y Arqueol desde el Caribe. 2012; 16:69-101.
Ranocchiari D, Calabresi G. Ethnicity and Religion in the Archipelago of San Andrés, Providencia, and Santa Catalina. Bull Lat Am Res, 2016;35:481-495. https://doi.org/10.1111/blar.12475
Emmer O C. Immigration into the Caribbean; The Introduction of Chinese and East Indian Indentured Labourers Between 1839 and 1917. Itinerario, 1990;14:61-95. https://doi.org/10.1017/S0165115300005684
Javitt J C, McBean A M, Nicholson G A, Babish J D, Warren J L, Krakauer H. Undertreatment of glaucoma among black Americans. N Engl J Med. 1991;325(20):1418-22. https://doi.org/10.1056/NEJM199111143252005 PMid:1922253
Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt JC, Martone JF, Royall RM, Witt KA, Ezrine S. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med. 1991;325(20):1412-7. https://doi.org/10.1056/NEJM199111143252004 PMid:1922252
Pećina-Slaus N. Wnt signal transduction pathway and apoptosis: a review. Cancer Cell Int. 2010; 10:22. https://doi.org/10.1186/1475-2867-10-22 PMid:20591184 PMCid:PMC2908610
Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH, Gruber J, Tolwinski NS. WNT Signaling in Disease. Cells. 2019;8(8):826. https://doi.org/10.3390/cells8080826 PMid:31382613 PMCid:PMC6721652
Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S, Wallace V, Ashery-Padan R, Lang RA. Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse. Development. 2015;142(5):972-82. https://doi.org/10.1242/dev.120022 PMid:25715397 PMCid:PMC4352985
Drenser KA. Wnt signaling pathway in retinal vascularization. Eye Brain. 2016; 8:141-146. https://doi.org/10.2147/EB
Hägglund AC, Berghard A, Carlsson L. Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One. 2013;8(12): e81158. https://doi.org/10.1371/journal.pone.0081158 PMid:24324671 PMCid:PMC3852023
Liu H, Xu S, Wang Y, Mazerolle C, Thurig S, Coles BL, Ren JC, Taketo MM, van der Kooy D, Wallace VA. Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev Biol. 2007;308(1):54-67. https://doi.org/10.1016/j.ydbio.2007.04.052 PMid:17574231
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res. 2019; 70:110-133. https://doi.org/10.1016/j.preteyeres.2018.11.008 PMid:30513356 PMCid:PMC6545170
de Iongh RU, Abud HE, Hime GR. WNT/Frizzled signaling in eye development and disease. Front Biosci. 2006; 11:2442-64. https://doi.org/10.2741/1982 PMid:16720326
Wang WH, McNatt LG, Pang IH, Millar JC, Hellberg PE, Hellberg MH, Steely HT, Rubin JS, Fingert JH, Sheffield VC, Stone EM, Clark AF. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118(3):1056-64. https://doi.org/10.1172/JCI33871
Webber HC, Bermudez JY, Sethi A, Clark AF, Mao W. Crosstalk between TGFβ and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res. 2016; 148:97-102. https://doi.org/10.1016/j.exer.2016.04.007 PMid:27091054 PMCid:PMC5310225
Dhamodaran K, Baidouri H, Sandoval L, Raghunathan V. Wnt Activation After Inhibition Restores Trabecular Meshwork Cells Toward a Normal Phenotype. Investigative Ophthalmology & Visual Science. 2020;61(6):30. https://doi.org/10.1167/iovs.61.6.30 PMid:32539133 PMCid:PMC7415288
Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D, et al. Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol. 2010; 11:4. https://doi.org/10.1186/1471-2121-11-4 PMid:20085643 PMCid:PMC2826298
Sirohi K, Chalasani ML, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy. 2013;9(4):510-27. https://doi.org/10.4161/auto.23458 PMid:23357852 PMCid:PMC3627667
Sugimoto M, Cutler A, Shen B, Moss SE, Iyengar SK, Klein R, Folkman J, Anand-Apte B. Inhibition of EGF signaling protects the diabetic retina from insulin-induced vascular leakage. Am J Pathol. 2013;183(3):987-95. https://doi.org/10.1016/j.ajpath.2013.05.017 PMid:23831329 PMCid:PMC3763764
Anand-Apte B, Ebrahem Q, Cutler A, Farage E, Sugimoto M, Hollyfield J, Folkman J. Betacellulin induces increased retinal vascular permeability in mice. PLoS One. 2010;5(10): e13444. https://doi.org/10.1371/journal.pone.0013444 PMid:20976146 PMCid:PMC2956654
Nie XG, Fan DS, Huang YX, He YY, Dong BL, Gao F. Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma. Am J Physiol Cell Physiol. 2018;315(6):C839-C849. https://doi.org/10.1152/ajpcell.00324.2017 PMid:30183321
Reddy S, Starr C. Seckel syndrome and spontaneously dislocated lenses. J Cataract Refract Surg.;33(5):910-2. https://doi.org/10.1016/j.jcrs.2006.12.027 PMid:17466870
Guirgis MF, Lam BL, Howard CW. Ocular manifestations of Seckel syndrome. Am J Ophthalmol. 2001;132(4):596-7. https://doi.org/10.1016/S0002-9394(01)01046-7
McIntyre RE, Lakshminarasimhan Chavali P, Ismail O, Carragher DM, et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 2012;8(11): e1003022. https://doi.org/10.1371/journal.pgen.1003022 PMid:23166506 PMCid:PMC3499256
Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet. 2011;88(2):207-15. https://doi.org/10.1016/j.ajhg.2011.01.002 PMid:21295282 PMCid:PMC3035703

Copyright (c) 2022 Universidad del Valle

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use