Main Article Content

Authors

Aim: To evaluate the linear variability of comfortable gait according to socioeconomic status in community-dwelling elderly.

Method: For this cross-sectional observational study 63 self- functioning elderly were categorized according to the socioeconomic level on medium-low (n= 33, age 69.0 ± 5.0 years) and medium-high (n= 30, age 71.0 ± 6.0 years). Each participant was asked to perform comfortable gait speed for 3 min on an 40 meters elliptical circuit, recording in video five strides which were transformed into frames, determining the minimum foot clearance, maximum foot clearance and stride length. The intra-group linear variability was calculated by the coefficient of variation in percent.

Results: The trajectory parameters variability is not different according to socioeconomic status with a 30% (range= 15-55%) for the minimum foot clearance and 6% (range= 3-8%) in maximum foot clearance. Meanwhile, the stride length consistently was more variable in the medium-low socioeconomic status for the overall sample (p= 0.004), female (p= 0.041) and male gender (p= 0.007), with values near 4% (range = 2.5-5.0%) in the medium-low and 2% (range = 1.5-3.5%) in the medium-high.

Conclusions: The intra-group linear variability is consistently higher and within reference parameters for stride length during comfortable gait for elderly belonging to medium-low socioeconomic status. This might be indicative of greater complexity and consequent motor adaptability.



Paul Alejandro Medina González, Universidad Católica del Maule

Kinesiólogo, Licenciado en Kinesiología y Magíster en Kinesiología de la Universidad Católica del Maule. Actualmente me desempeño en la Línea de Razonamiento Profesional y como integrante del Laboratorio de Envejecimiento y Funcionalidad del Departamento de Kinesiología de la Universidad Católica del Maule. Mis áreas de interés son la Kinesiología, el Movimiento Ecológico y la Antropología Biológica, para responder a la interrogante acerca de la “Caracterización de la función-disfunción del movimiento humano según aspectos evolutivos, ecológicos y sociales, en específico la marcha para diferentes etapas del ciclo vital”.

Medina González, P. A. (2016). Linear variability of gait according to socioeconomic status in elderly. Colombia Medica, 47(2), 94–99. https://doi.org/10.25100/cm.v47i2.2175

Weinert BT, Timiras PS. Invited review: Theories of aging. J Appl Physiol. 2003;95(4):1706–1716.

Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging. 2014;9:433–441.

Durakovic Z, Misigoj-Durakovic M. Does chronological age reduce working ability. Coll Antropol. 2006;30(1):213–219.

Hutchinson JR, Gatesy SM. Bipedalism. Nature Publishing Group.; 2001. [abril 23 2014]. Disponible en: http://www.rvc.ac.uk/SML/People/jhutchinson/documents/JRH4.pdf.

Jacelon CS. The Barthel Index and other indices of functional ability. Rehabilitation Nursing. 1986;11:9–11.

Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait Posture. 2007;26(1):128–134.

Merryweather A, Yoo B, Bloswick D. Gait characteristics associated with trip-induced falls on level and sloped irregular surfaces. Minerals. 2011;1(1):109–121.

Campbell AJ, Borrie MJ, Spears GF, Jackson SL, Brown JS, Fitzgerald JL. Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study. Age Ageing. 1990;19(2):136–141.

Perell KL, Nelson A, Goldman RL, Luther SL, Prieto-Lewis N, Rubenstein LZ. Fall risk assessment measures: an analytic review. J Gerontol A Biol Sci Med Sci. 2001;56(12):M761–M766.

Begg R, Best R, Dell'Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimization of trip-related falls. Gait Posture. 2007;25(2):191–198.

Rebato E, Susanne C, Chiarelli B. Para comprender la antropología biológica. Navarra, España: Verbo Divino; 2005.

Adimark . Manual de aplicación del nivel socioeconómico ESOMAR. Santiago, Chile: 2000. [ 26 julio 2015]. Disponible en: http://www.microweb.cl/idm/documentos/ESOMAR.pdf.

Katsavelis D, Mukherjee M, Decker L, Stergiou N. The effect of virtual reality on gait variability. Nonlinear Dynamics Psychol Life Sci. 2010;14(3):239–256.

Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture. 2006;23(4):441–444.

Pickhinke J, Chien JH, Mukherjee M. Varying the speed of perceived self-motion affects postural control during locomotion. Stud Health Technol Inform. 2014;196:319–324.

Brunner E, Shipley M, Spencer V, Kivimaki M, Chandola T, Gimeno D, et al. Social inequality in walking speed in early old age in the Whitehall II study. J Gerontol A Biol Sci Med Sci. 2009;64(10):1082–1089.

Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009;32(2):46–49.

Ministerio de Salud Chile,Programa de Salud del Adulto Mayor, División de Prevención y Control de Enfermedades, Subsecretaría de Salud Pública [enero 23 2015];Manual de Aplicación del Examen de Medicina Preventiva del Adulto Mayor (EMPAM) Disponible en: http://web.minsal.cl/portal/url/item/ab1f81f43ef0c2a6e04001011e011907.pdf.

Ministerio de Salud . Guía Clínica Examen de Medicina Preventiva. Ministerio de Salud, Chile; 2008. [10 junio 2016]. Disponible en: http://web.minsal.cl/portal/url/item/73b3fce9826410bae04001011f017f7b.pdf.

Tapia CP, Valdivia-Rojas Y, Varela HV, Carmona AG, Iturra VM, Jorquera MC. Indicadores de fragilidad en adultos mayores del sistema público de salud de la ciudad de Antofagasta. Rev Med Chil. 2015;143(4):459–466.

Medina P. Confiabilidad de una metodología aplicable para la medición de cinemática simple del pie en adultos mayores autovalentes de la comunidad. Biosalud. 2014;13(1):9–20.

Karst GM, Hageman PA, Jones TF, Bunner SH. Reliability of foot trajectory measures within and between testing sessions. J Gerontol A Biol Sci Med Sci. 1999;54(7):M343–M347.

Muro de la Herran A.Garcia Zapirain B.Mendez Zorrilla A Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel) 2014;14(2):3362–3394.

Hausdorff JM, Zemany L, Peng CK, Golderger L. Maturation of gait Dynamics: stride to stride variability and this temporal organization in children. J Appl Physiol (1985) 1999;86(3):1040–1047.

Callisaya ML, Buzzard L, Smhmidt D, MCGinley JL, Srikanth K. Ageing and gait variability - a population-based study of older people. Age Ageing. 2010;39:191–197.

Khandoker AH, Palaniswami M, Begg RK. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil. 2008;5:4–4.

Hausdorff JM. Gait variabilitymethods, modeling and meaning. J Neuroeng Rehabil. 2005;20(2):19–19.

De La Cruz TB , Sánchez LMD, Sarabia CE, Naranjo OJ. Entropy in the analysis of gait complexity: A state of the art. British J Appl Sci Technol. 2013;3(4):1097–1105.

Barrett RS, Mills PM, Begg RK. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture. 2010;32:429–435.

Stokes M. Reliability and Repeatability of methods of measuring muscle in physiotherapy. Physioth Pract. 1985;1(2):71–76.

Gabell A, Nayak US. The effect of age on variability in gait. J Gerontol. 1984;39(6):662–666.

Beauchet O, Allali G, Annweiler C, Bridenbaugh S, Assal F, Kressig RW, et al. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology. 2009;55(6):702–706.

Allen DD. Proposing 6 dimensions within the construct of movement in the Movement Continuum Theory. Phys Ther. 2007;87:888–898.

Koster A, Penninx B, Bosma H, Kempen G, Harris T, Newman AB, et al. Is there a biomedical explanation for socioeconomic differences in incident mobility limitation. J Gerontol A Biol Sci Med Sci. 2005;60A(8):1022–1027.

Nilsson CJ, Avlund K, Lund R. Onset of mobility limitations in old age: the combined effect of socioeconomic position and social relations. Age Ageing. 2011;40:607–614.

Thorpe R, Koster A, Kritchevsky S, Newman AB, Harris T, Ayonayon HN, et al. Race, socioeconomic resources, and late-life mobility and decline: findings from the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci. 2011;66A:1114–1123.

Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Pt 2Am J Physiol. 1994;266(4):H1643–H1656.

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105(49):19052–19059.

Khandoker AH, Lynch K, Karmakar CK, Begg RK, Palaniswami M. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces. J Neuroeng Rehabil. 2010;28(7):18–18.

Karmakar CK, Khandoker AH, Begg RK, Palaniswami M, Taylor S. Understanding ageing effects by approximate entropy analysis of gait variability; 29th Annual International Conference of the IEEE EMBS Cité Internationale ; August 23-26, 2007; Lyon, France.

Costa M, Peng C-K, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A: Statist Mechanics Applicat. 2003;330:53–60.

White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, et al. Trajectories of gait speed predicts mortality in well-functioning older adults: the Health, Aging and Body Composition study. J Gerontol A Biol Sci Med Sci. 2013;68(4):456–464.

Downloads

Download data is not yet available.
Received 2015-12-19
Accepted 2016-06-16
Published 2016-06-21