Role of AKT/mTORC1 pathway in pancreatic β-cell proliferation
Main Article Content
Growth factors, insulin signaling and nutrients are important regulators of β-cell mass and function. The events linking these signals to regulation of β-cell mass are not completely understood. Recent findings indicate that mTOR pathway integrates signals from growth factors and nutrients with transcription, translation, cell size, cytoskeleton remodeling and mitochondrial metabolism. mTOR is a part of two distinct complexes; mTORC1 and mTORC2. The mammalian TORC1 is sensitive to rapamycin and contains Raptor, deptor, PRAS40 and the G protein β-subunit-like protein (GβL). mTORC1 activates key regulators of protein translation; ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1.
This review summarizes current findings about the role of AKT/mTORC1 signaling in regulation of pancreatic β cell mass and proliferation. mTORC1 is a major regulator of β-cell cycle progression by modulation of cyclins D2, D3 and cdk4/cyclin D activity. These studies uncovered key novel pathways controlling cell cycle progression in β-cells in vivo. This information can be used to develop alternative approaches to expand β-cell mass in vivo and in vitro without the risk of oncogenic transformation. The acquisition of such knowledge is critical for the design of improved therapeutic strategies for the treatment and cure of diabetes as well as to understand the effects of mTOR inhibitors in β-cell function.
- Diabetes Mellitus
- cell proliferation
- cell cycle
- islets of langerhans
- signal transductions
- signaling pathway
- AKT/PKB/mTORC1
Bonner-Weir S. Life and death of the pancreatic beta cells.
Trends Endocrinol Metab. 2000:375-8.
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-
cells are formed by self-duplication rather than stem-cell differentiation. Nature 429. 2004:41-6. DOI: https://doi.org/10.1038/nature02520
Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA.
Very slow turnover of beta-cells in aged adult mice. Diabetes.
:2557-67.
Dickson LM, Rhodes CJ. Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab. 2004:E192-8. DOI: https://doi.org/10.1152/ajpendo.00031.2004
Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S,
et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature.
;391(6670):900-4.
Elghazi L, Balcazar N, Bernal-Mizrachi E. Emerging role of
protein kinase B/Akt signaling in pancreatic beta-cell mass and
function. Int J Biochem Cell Biol. 2006:157-63.
Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt
MA. Islet beta cell expression of constitutively active Akt1/PKB
alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest. 2001;108(11):1631-8. DOI: https://doi.org/10.1172/JCI13785
Bernal-Mizrachi E, Fatrai S, Johnson JD, Ohsugi M, Otani K,
Han Z, et al. Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J Clin Invest. 2004;114(7):928-36. DOI: https://doi.org/10.1172/JCI20016
Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy
EP, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet. 1999;22(1):44-52. DOI: https://doi.org/10.1038/8751
Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta
M, Long SY, et al. Cyclins D2 and D1 are essential for postnatal
pancreatic beta-cell growth. Mol Cell Biol. 2005:3752-62.
Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase
kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499-511. DOI: https://doi.org/10.1101/gad.12.22.3499
Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O.
P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for
proteasomal degradation. Oncogene. 2004:7537-44.
Kida A, Kakihana K, Kotani S, Kurosu T, Miura O. Glycogen
synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007:6630-40. DOI: https://doi.org/10.1038/sj.onc.1210490
Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, et al. Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase- 4 activity. Diabetes. 2006:318-25. DOI: https://doi.org/10.2337/diabetes.55.02.06.db05-0757
Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003:590-603. DOI: https://doi.org/10.1038/sj.leu.2402824
Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K,
Sakaue H, et al. Deletion of Cdkn1b ameliorates hyperglycemia
by maintaining compensatory hyperinsulinemia in diabetic mice.
Nat Med. 2005:175-82.
Rachdi L, Balcazar N, Elghazi L, Barker DJ, Krits I, Kiyokawa
H, et al. Differential effects of p27 in regulation of beta-cell mass
during development, neonatal period, and adult life. Diabetes.
:3520-8.
Heitman J, Movva NR, Hall MN. Targets for cell cycle
arrest by the immunosuppressant rapamycin in yeast. Science.
;253(5022):905-9.
Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J. TOR
deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol. 2002:1448-61. DOI: https://doi.org/10.1016/S0960-9822(02)01091-6
Oldham S, Bohni R, Stocker H, Brogiolo W, Hafen E. Genetic
control of size in Drosophila. Philos Trans R Soc Lond B Biol Sci.
;355(1399):945-52.
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder
SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994:35-43. DOI: https://doi.org/10.1016/0092-8674(94)90570-3
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004:1296-302. DOI: https://doi.org/10.1016/j.cub.2004.06.054
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et
al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002:177-89. DOI: https://doi.org/10.1016/S0092-8674(02)00833-4
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-
Bromage H, et al. mTOR interacts with raptor to form a nutrient-
sensitive complex that signals to the cell growth machinery.
Cell. 2002:163-75.
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA,
Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009:873-86. DOI: https://doi.org/10.1016/j.cell.2009.03.046
Cybulski N, Hall MN. TOR complex 2: a signaling pathway of
its own. Trends Biochem Sci. 2009:620-7.
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005:1098-101. DOI: https://doi.org/10.1126/science.1106148
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley
AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006:159-68. DOI: https://doi.org/10.1016/j.molcel.2006.03.029
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target
of TSC2 GAP activity and regulates mTOR signaling. Genes Dev.
:1829-34.
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005:702-13. DOI: https://doi.org/10.1016/j.cub.2005.02.053
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH.
Insulin signalling to mTOR mediated by the Akt/PKB substrate
PRAS40. Nat Cell Biol. 2007:316-23.
Hay N, Sonenberg N. Upstream and downstream of mTOR.
Genes Dev. 2004:1926-45.
Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14(21):2712-24. DOI: https://doi.org/10.1101/gad.835000
Proud CG. Regulation of mammalian translation factors by
nutrients. Eur J Biochem. 2002:5338-49.
Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P,
et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci. 2005:14238-43. DOI: https://doi.org/10.1073/pnas.0506925102
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Tho-
mas G. Mammalian TOR: a homeostatic ATP sensor. Science.
:1102-5.
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002:23977-80. DOI: https://doi.org/10.1074/jbc.C200171200
Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev.
:79-100.
Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005:32081-9. DOI: https://doi.org/10.1074/jbc.M502876200
Edinger AL, Thompson CB. Akt maintains cell size and survival
by increasing mTOR-dependent nutrient uptake. Mol Biol
Cell. 2002;13(7):2276-88. DOI: https://doi.org/10.1091/mbc.01-12-0584
Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible
factor-independent hypoxic response regulating mammalian target
of rapamycin and its targets. J Biol Chem. 2003:29655-60.
Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson
RB, Thomas G. Rapamycin suppresses 5’TOP mRNA translation
through inhibition of p70s6k. EMBO J. 1997;16(12):3693-704. DOI: https://doi.org/10.1093/emboj/16.12.3693
Harris TE, Lawrence JC, Jr. TOR signaling. Sci STKE. 2003:re15. DOI: https://doi.org/10.1126/stke.2122003re15
Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J,
et al. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation
and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 2004;24(8):3112-24. DOI: https://doi.org/10.1128/MCB.24.8.3112-3124.2004
Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma
SC. Disruption of the p70(s6k)/p85(s6k) gene reveals a small
mouse phenotype and a new functional S6 kinase. EMBO J.
;17(22):6649-59.
Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science.
:2126-9.
Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N.
Dominant negative mutants of mammalian translation initiation
factor eIF-4A define a critical role for eIF-4F in cap-dependent
and cap-independent initiation of translation. EMBO J.
;13(5):1205-15.
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian
cell size is controlled by mTOR and its downstream targets S6K1
and 4EBP1/eIF4E. Genes Dev. 2002;16(12):1472-87. DOI: https://doi.org/10.1101/gad.995802
Lazaris-Karatzas A, Sonenberg N. The mRNA 5’ cap-binding
protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol. 1992;12(3):1234-8. DOI: https://doi.org/10.1128/MCB.12.3.1234
Miron M, Verdu J, Lachance PE, Birnbaum MJ, Lasko PF,
Sonenberg N. The translational inhibitor 4E-BP is an effector of
PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell
Biol. 2001:596-601.
Kwon G, Marshall CA, Liu H, Pappan KL, Remedi MS, Mc-
Daniel ML. Glucose-stimulated DNA synthesis through mammalian
target of rapamycin (mTOR) is regulated by KATP channels:
effects on cell cycle progression in rodent islets. J Biol Chem.
:3261-7.
Gleason CE, Lu D, Witters LA, Newgard CB, Birnbaum MJ.
The role of AMPK and mTOR in nutrient sensing in pancreatic
beta-cells. J Biol Chem. 2007:10341-51.
Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M,
Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant
of cell size and glucose homeostasis. Genes Dev. 2005:2199-
Rachdi L, Balcazar N, Osorio-Duque F, Elghazi L, Weiss A,
Gould A, et al. Disruption of Tsc2 in pancreatic beta cells induces
beta cell mass expansion and improved glucose tolerance in
a TORC1-dependent manner. Proc Natl Acad Sci. 2008:9250-5.
Hernandez O, Way S, McKenna J, 3rd, Gambello MJ. Generation of a conditional disruption of the Tsc2 gene. Genesis.
;45(2):101-6.
Mori H, Inoki K, Opland D, Munzberg H, Villanueva EC,
Faouzi M, et al. Critical roles for the TSC-mTOR pathway in betacell function. Am J Physiol Endocrinol Metab. 2009:E1013-22. DOI: https://doi.org/10.1152/ajpendo.00262.2009
Balcazar N, Sathyamurthy A, Elghazi L, Gould A, Weiss A,
Shiojima I, et al. mTORC1 activation regulates beta-cell mass and
proliferation by modulation of cyclin D2 synthesis and stability. J
Biol Chem. 2009:7832-42.
Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M,
Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell
adaptation to hyperglycemia and exacerbates the metabolic state
in type 2 diabetes. Diabetes. 2008:945-57.
Zhang N, Su D, Qu S, Tse T, Bottino R, Balamurugan AN, et al. Sirolimus is associated with reduced islet engraftment and impaired beta-cell function. Diabetes. 2006:2429-36. DOI: https://doi.org/10.2337/db06-0173
Elghazi L, Balcazar N, Blandino-Rosano M, Cras-Meneur C,
Fatrai S, Gould AP, et al. Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells. Diabetes. 2010:2390-9. DOI: https://doi.org/10.2337/db09-0851
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use