Main Article Content


Aim: To evaluate the linear variability of comfortable gait according to socioeconomic status in community-dwelling elderly.

Method: For this cross-sectional observational study 63 self- functioning elderly were categorized according to the socioeconomic level on medium-low (n= 33, age 69.0 ± 5.0 years) and medium-high (n= 30, age 71.0 ± 6.0 years). Each participant was asked to perform comfortable gait speed for 3 min on an 40 meters elliptical circuit, recording in video five strides which were transformed into frames, determining the minimum foot clearance, maximum foot clearance and stride length. The intra-group linear variability was calculated by the coefficient of variation in percent.

Results: The trajectory parameters variability is not different according to socioeconomic status with a 30% (range= 15-55%) for the minimum foot clearance and 6% (range= 3-8%) in maximum foot clearance. Meanwhile, the stride length consistently was more variable in the medium-low socioeconomic status for the overall sample (p= 0.004), female (p= 0.041) and male gender (p= 0.007), with values near 4% (range = 2.5-5.0%) in the medium-low and 2% (range = 1.5-3.5%) in the medium-high.

Conclusions: The intra-group linear variability is consistently higher and within reference parameters for stride length during comfortable gait for elderly belonging to medium-low socioeconomic status. This might be indicative of greater complexity and consequent motor adaptability.

Paul Alejandro Medina González, Universidad Católica del Maule

Kinesiólogo, Licenciado en Kinesiología y Magíster en Kinesiología de la Universidad Católica del Maule. Actualmente me desempeño en la Línea de Razonamiento Profesional y como integrante del Laboratorio de Envejecimiento y Funcionalidad del Departamento de Kinesiología de la Universidad Católica del Maule. Mis áreas de interés son la Kinesiología, el Movimiento Ecológico y la Antropología Biológica, para responder a la interrogante acerca de la “Caracterización de la función-disfunción del movimiento humano según aspectos evolutivos, ecológicos y sociales, en específico la marcha para diferentes etapas del ciclo vital”.

Medina González, P. A. (2024). Linear variability of gait according to socioeconomic status in elderly. Colombia Medica, 47(2), 94–99. (Original work published June 21, 2016)

Weinert BT, Timiras PS. Invited review: Theories of aging. J Appl Physiol. 2003;95(4):1706–1716.

Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging. 2014;9:433–441.

Durakovic Z, Misigoj-Durakovic M. Does chronological age reduce working ability. Coll Antropol. 2006;30(1):213–219.

Hutchinson JR, Gatesy SM. Bipedalism. Nature Publishing Group.; 2001. [abril 23 2014]. Disponible en:

Jacelon CS. The Barthel Index and other indices of functional ability. Rehabilitation Nursing. 1986;11:9–11.

Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait Posture. 2007;26(1):128–134.

Merryweather A, Yoo B, Bloswick D. Gait characteristics associated with trip-induced falls on level and sloped irregular surfaces. Minerals. 2011;1(1):109–121.

Campbell AJ, Borrie MJ, Spears GF, Jackson SL, Brown JS, Fitzgerald JL. Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study. Age Ageing. 1990;19(2):136–141.

Perell KL, Nelson A, Goldman RL, Luther SL, Prieto-Lewis N, Rubenstein LZ. Fall risk assessment measures: an analytic review. J Gerontol A Biol Sci Med Sci. 2001;56(12):M761–M766.

Begg R, Best R, Dell'Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimization of trip-related falls. Gait Posture. 2007;25(2):191–198.

Rebato E, Susanne C, Chiarelli B. Para comprender la antropología biológica. Navarra, España: Verbo Divino; 2005.

Adimark . Manual de aplicación del nivel socioeconómico ESOMAR. Santiago, Chile: 2000. [ 26 julio 2015]. Disponible en:

Katsavelis D, Mukherjee M, Decker L, Stergiou N. The effect of virtual reality on gait variability. Nonlinear Dynamics Psychol Life Sci. 2010;14(3):239–256.

Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture. 2006;23(4):441–444.

Pickhinke J, Chien JH, Mukherjee M. Varying the speed of perceived self-motion affects postural control during locomotion. Stud Health Technol Inform. 2014;196:319–324.

Brunner E, Shipley M, Spencer V, Kivimaki M, Chandola T, Gimeno D, et al. Social inequality in walking speed in early old age in the Whitehall II study. J Gerontol A Biol Sci Med Sci. 2009;64(10):1082–1089.

Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009;32(2):46–49.

Ministerio de Salud Chile,Programa de Salud del Adulto Mayor, División de Prevención y Control de Enfermedades, Subsecretaría de Salud Pública [enero 23 2015];Manual de Aplicación del Examen de Medicina Preventiva del Adulto Mayor (EMPAM) Disponible en:

Ministerio de Salud . Guía Clínica Examen de Medicina Preventiva. Ministerio de Salud, Chile; 2008. [10 junio 2016]. Disponible en:

Tapia CP, Valdivia-Rojas Y, Varela HV, Carmona AG, Iturra VM, Jorquera MC. Indicadores de fragilidad en adultos mayores del sistema público de salud de la ciudad de Antofagasta. Rev Med Chil. 2015;143(4):459–466.

Medina P. Confiabilidad de una metodología aplicable para la medición de cinemática simple del pie en adultos mayores autovalentes de la comunidad. Biosalud. 2014;13(1):9–20.

Karst GM, Hageman PA, Jones TF, Bunner SH. Reliability of foot trajectory measures within and between testing sessions. J Gerontol A Biol Sci Med Sci. 1999;54(7):M343–M347.

Muro de la Herran A.Garcia Zapirain B.Mendez Zorrilla A Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel) 2014;14(2):3362–3394.

Hausdorff JM, Zemany L, Peng CK, Golderger L. Maturation of gait Dynamics: stride to stride variability and this temporal organization in children. J Appl Physiol (1985) 1999;86(3):1040–1047.

Callisaya ML, Buzzard L, Smhmidt D, MCGinley JL, Srikanth K. Ageing and gait variability - a population-based study of older people. Age Ageing. 2010;39:191–197.

Khandoker AH, Palaniswami M, Begg RK. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil. 2008;5:4–4.

Hausdorff JM. Gait variabilitymethods, modeling and meaning. J Neuroeng Rehabil. 2005;20(2):19–19.

De La Cruz TB , Sánchez LMD, Sarabia CE, Naranjo OJ. Entropy in the analysis of gait complexity: A state of the art. British J Appl Sci Technol. 2013;3(4):1097–1105.

Barrett RS, Mills PM, Begg RK. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture. 2010;32:429–435.

Stokes M. Reliability and Repeatability of methods of measuring muscle in physiotherapy. Physioth Pract. 1985;1(2):71–76.

Gabell A, Nayak US. The effect of age on variability in gait. J Gerontol. 1984;39(6):662–666.

Beauchet O, Allali G, Annweiler C, Bridenbaugh S, Assal F, Kressig RW, et al. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology. 2009;55(6):702–706.

Allen DD. Proposing 6 dimensions within the construct of movement in the Movement Continuum Theory. Phys Ther. 2007;87:888–898.

Koster A, Penninx B, Bosma H, Kempen G, Harris T, Newman AB, et al. Is there a biomedical explanation for socioeconomic differences in incident mobility limitation. J Gerontol A Biol Sci Med Sci. 2005;60A(8):1022–1027.

Nilsson CJ, Avlund K, Lund R. Onset of mobility limitations in old age: the combined effect of socioeconomic position and social relations. Age Ageing. 2011;40:607–614.

Thorpe R, Koster A, Kritchevsky S, Newman AB, Harris T, Ayonayon HN, et al. Race, socioeconomic resources, and late-life mobility and decline: findings from the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci. 2011;66A:1114–1123.

Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Pt 2Am J Physiol. 1994;266(4):H1643–H1656.

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105(49):19052–19059.

Khandoker AH, Lynch K, Karmakar CK, Begg RK, Palaniswami M. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces. J Neuroeng Rehabil. 2010;28(7):18–18.

Karmakar CK, Khandoker AH, Begg RK, Palaniswami M, Taylor S. Understanding ageing effects by approximate entropy analysis of gait variability; 29th Annual International Conference of the IEEE EMBS Cité Internationale ; August 23-26, 2007; Lyon, France.

Costa M, Peng C-K, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait dynamics. Physica A: Statist Mechanics Applicat. 2003;330:53–60.

White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, et al. Trajectories of gait speed predicts mortality in well-functioning older adults: the Health, Aging and Body Composition study. J Gerontol A Biol Sci Med Sci. 2013;68(4):456–464.


Download data is not yet available.
Received 2015-12-19
Accepted 2016-06-16
Published 2024-06-07