Main Article Content

Authors

Introduction: Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid b-oxidation. The SCAD gene is located on chromosome 12q22 and is approximately 13 kb long with 10 exons and 1236 nucleotides of coding sequence. Hereditary SCAD deficiency has been reported and only a few cases of this disorder have been described.
Objective: The present study was conducted to determine the possible presence of the 625G>A variation in the short-chain acyl-CoA dehydrogenase gene in Caldas (Colombia), given that variations 625G>A and 511C>T are present in 14% of some studied populations; thereby sometimes causing its deficiency.
Methods: This is a descriptive study; blood samples from three-hundred adult volunteers were tested for 625G>A polymorphism, analysing the polymerase chain reaction amplified cDNA, using a single-stranded conformation polymorphism assay. The results were confirmed by direct bidirectional cycle sequencing using DNA from the positive persons.
Results: The polymorphism was identified and confirmed in four healthy persons.
Conclusion: This is evidence of the presence of 625G>A polymorphism in the short-chain acyl-CoA dehydrogenase gene in Colombia, meaning that some people in our populations can be at risk of suffering SCAD deficiency and its main complication: the ethylmalonic aciduria.
Osorio, J. H. (2010). Evidence in Colombia of 625G>A polymorphism in the short chain acyl-CoA dehydrogenase gene, a variation which could cause glutaric aciduria in our populations. Colombia Medica, 41(3), 235–239. https://doi.org/10.25100/cm.v41i3.709

Downloads

Download data is not yet available.