Genomic study of the critical region of chromosome 21 associated to Down syndrome
Main Article Content
Introduction: Previous reports have identified a region of chromosome 21 known as Down ayndrome critical region (DSCR) in which the expression of some genes would modulate the main clinical characteristics of this pathology. In this sense, there is currently limited information on the architecture of the DSCR associated.
Objective: To obtain in silico a detailed vision of the chromatin structure associated with the evaluation of genomic covariables contained in public data bases.
Methods: Taking as reference the information consigned in the National Center for Biotechnology Information, the Genome Browser from the University of California at Santa Cruz and from the HapMap project, a chromosome walk along 21 Mb of the distal portion of chromosome 21q arm was performed. In this distal portion, the number of single nucleotide polymorphisms (SNP), number of CpG islands, repetitive elements, recombination frequencies, and topographical state of that chromatin were recorded.
Results: The frequency of CpG islands and Ref genes increased in the more distal 1.2 Mb DSCR that contrast with those localized near to the centromere. The highest level of recombination calculated for women was registered in the 21q22.12 to 22.3 bands. DSCR 6 and 9 genes showed a high percentage of methylation in CpG islands in DNA from normal and trisomic fibroblasts. The DSCR2 gene exhibited high levels of open chromatin and also methylation in some lysine residues of the histone H3 as relevant characteristics.
Conclusion: The existence of a genomic environment characterized by high values of recombination frequencies and CpG methylation in DSCR 6 and 9 and also DSCR2 genes led us to postulate that in non-disjunction detected in Down syndrome, complex genomic, epigenetic and environmental relationships regulate some processes of meiosis.
- Down syndrome
- Down syndrome critical region
- Genomics
- Chromatin architecture
- Epigenetics
- Non-disjunction.
CanWeld MA, Honein MA, Yuskiv N, Xing J, Mai CT,Collins JS, et al. National estimates and race/ethnic-specificvariation of selected birth defects in the United States, 1999-2001. Birth Defects Res A Clin Mol Teratol. 2006; 76: 747-56.2.Ramírez RE, Isaza C, Gutiérrez MI. La incidencia del síndro-me de Down en Cali. Colomb Med. 1996; 27: 138-42.3.García H, Salguero GA, Moreno J, Arteaga C, Giraldo A.Frecuencia de anomalías congénitas en el Instituto MaternoInfantil de Bogotá. BiomEdica. 2003; 23: 161-72.4.Turnpenny P, Ellard S. Elementos de genética médica. 1 3a e d .Barcelona; Elsevier; 2009.5.Hernández D, Fisher EMC. Down syndrome genetics:unraveling a multifactorial disorder. Hum Mol Genet. 1996; 5:1411-6.6.Lamb NE, Hassold TJ. Nondis-junction. A view from theRingside. N Engl J Med. 2004; 351: 1931-4.7.Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL.Association between maternal age and meiotic recombinationfor trisomy 21. Am J Med Gen. 2005; 76: 91-9.8.Gardiner K, Davisson M. The sequence of human chromosome21 and implications for research into Down syndrome. GenomeBiol. 2000; 1: reviews0002.1–0002.99.Montoya JC, Satizábal JM, García-Vallejo F, Sánchez A.Perspectiva y comprensión bioquímica del síndrome de Down.
El Hombre y la Máquina 2008; 30:118-29.10. Toyoda A, Noguchi H, Taylor TD, Ito T, Pletcher MT, SakakiS, et al. Comparative genomic sequence analysis of the humanChromosome 21 Down syndrome critical region. GenomeRes. 2002; 12: 1323-32.11. Eggermann T, Schönherr N, Spengler S, Jäger S, Denecke B,Binder G, et al. Identification of a 21q22 duplication in aSilver-Russell syndrome patient further narrows down theDown syndrome critical region. Am J Med Genet A. 2010;152A: 356-9.12. Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, TurnerG. Familial 4.3 Mb duplication of 21q22 sheds new light onthe Down syndrome critical region. J Med Genet. 2007; 44:448-51.13. Kollmann M, Sourjik V. In Silico biology: From simulation tounderstanding current biology. Curr Biol. 2007; 17: 132-4.14. Bönisch C, Nieratschker SM, Orfanos NK, Hake SB. Chromatinproteomics and epigenetic regulatory circuits. Expert RevProteomics. 2008; 5: 105-19.15. Feinberg AP. Phenotypic plasticity and the epigenetics ofhuman disease. Nature. 2007; 447: 433-40.16. Leeuwen FV, Steensel BV. Histone modifications: fromgenome-wide maps to functional insights. Genome Biol. 2005;6: 113-19.17. Ozsolak F, Song JS, Liu XS, Fisher DE. High-throughputmapping of the chromatin structure of human promoters. NatBiotechnol. 2007; 25: 244-8.18. Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C. DNAmethylation analysis of chromosome 21 gene promoters atsingle base pair and single allele resolution. PLoS Genet 2009;5: e1000438-e100.1371.19. Song HJ, Park J, Seo SR, Kim J, Paik SR, Chung KC. Downsyndrome critical region 2 protein inhibits the transcriptionalactivity of peroxisome proliferator-activated receptor b inHEK293 cells. Biochem Biophys Res Commun. 2008; 376:478-82.20. Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T,Walter J. CpG Island methylation in human lymphocytes ishighly correlated with DNA sequence, repeats, and predictedDNA Structure. PLoS Genet. 2006; 2: e26.21. Sherman SL, Takaesu N, Freeman SB, Grantham M, PhillipsC, Blackston RD. Trisomy 21: association between reducedrecombination and nondisjunction. Am J Hum Genet. 1991;49: 608-20.22. Tanzi R, Watkins PC, Stewart GD, Wexler NS, Gusella JF,Haines JL. A genetic linkage map of human chromosome 21:analysis of recombination as a function of sex and age. Am JHum Genet. 1992; 50: 551-8.23. Sherman SL, Lamb NE, Feingold E. Relationship ofrecombination patterns and maternal age among non-disjoinedchromosomes 21. Biochem Soc Trans. 2006; 34: 578-80.24. Ghosh S, Feingold E, Chakraborty S, Dey SK. Telomerelength is associated with types of chromosome 21 non-disjunction: a new insight into the maternal age effect onDown syndrome birth. Hum Genet. 2010; 10.1007/s00439-009-0785-8.25. SaranNG, Pletcher MT, NataleJE, ChengY, Reeves RH.Global disruption of the cerebellar transcriptome in a Downsyndrome mouse model. Hum Mol Genet. 2003; 12: 2013-9
Downloads
- Julio Cesar Montoya, Dianora Fajardo, Ángela Peña, Adalberto Sánchez, Martha C Domínguez, José María Satizábal, Felipe Garcia Vallejo, Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain , Colombia Medica: Vol. 45 No. 4 (2014)
- Beatriz Parra, Isabella Borrero, Felipe García, Caracterización de las glicoproteínas de una cepa de virus respiratorio sincicial aislada en Cali. , Colombia Medica: Vol. 28 No. 2 (1997)
- Claudia Corral, Felipe García, Jorge García, Pilar León, Adriana Herrera, Carlos Martínez, Fredy Moreno, Chronological versus dental age in subjects from 5 to 19 years: a comparative study with forensic implications , Colombia Medica: Vol. 41 No. 3 (2010)
- Jesús Cabrera, Felipe García, Aumento del número de amplicones obtenidos por IPCR en el ADN de personas seropositivas para HTLV-I afectadas con PET/HAM. , Colombia Medica: Vol. 31 No. 4 (2000)
- Felipe García, Mónica Chávez, Martha Cecilia Domínguez, Abraham Blank, Microagregación genética y geográfica de aislados del virus linfotrópico humano tipo I (HTLV-I) en zonas endémicas del suroccidente de Colombia. , Colombia Medica: Vol. 31 No. 3 (2000)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use