Main Article Content

Authors

Fungus from the Aspergillus genus mainly affects lung tissue, occurring when the integrity of the host immune system is compromised. The human body uses immunocompetence conditions from mechanical and enzymatic defenses and the action of the innate immune system cells and also uses adaptive responses to control infection.

Neutrophils, macrophages, and dendritic cells are critical as antifungal effector cells possess surface receptors that recognize fungal structures and trigger specific responses. TLRs and Dectin-1 the most studied for this interaction.

TLRs are responsible for the production and release of cytokines and Dectin-1 is essential in the phagocytosis of the particle recognition and production of ROS. The best-studied cytokines and its crucial role in the response to Aspergillus spp. are TNF-α, IFN-γ, and IL-12. In this work, we reviewed the main mechanisms related to molecular receptors on phagocytic cells involved in the recognition of Aspergillus spp. Understanding the immune response in situations of  immunocompetence and its comparison in immunodeficient organisms could provide alternatives to control invasive aspergillosis.

Lumbreras C, Gavaldà J. Aspergilosis invasora: manifestaciones

clínicas y tratamiento. Rev Iberoam Micol. 2003; 20: 79-89. DOI: https://doi.org/10.1023/A:1024438130716

Patterson TF, Kirkpatrick WR, White M, Hiemenz JW,

Wingard JR, Dupont B, et al. Invasive aspergillosis. Disease

spectrum, treatment practices, and outcomes. I3 Aspergillus

Study Group. Medicine. 2000; 79: 250-60. DOI: https://doi.org/10.1097/00005792-200007000-00006

Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality

rate: systematic review of the literature. Clin Infect Dis. 2001;

: 358-66.

Silva RF. Infecções fúngicas em imunocomprometidos.

Capítulo 8. J Bras Pneumol. 2010; 36: 142-7. DOI: https://doi.org/10.1590/S1806-37132010000100019

Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol

Rev. 1999; 12: 310-50. DOI: https://doi.org/10.1128/CMR.12.2.310

Dagenais TRT, Keller NP. Pathogenesis of Aspergillus

fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;

: 447-65.

Balloy V, Chignard M. The innate immune response to

Aspergillus fumigatus. Microbes Infect. 2009; 11: 919-27. DOI: https://doi.org/10.1016/j.micinf.2009.07.002

Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ,

Gallin JI. Human polymorphonuclear leukocytes inhibit

Aspergillus fumigatus conidial growth by lactoferrinmediated

iron depletion. J Immunol. 2007; 178: 6367-73. DOI: https://doi.org/10.4049/jimmunol.178.10.6367

Tkalcevic J, Novelli M, Phylactides M, Iredale JP, Segal AW,

Roes J. Impaired immunity and enhanced resistance to

endotoxin in the absence of neutrophil elastase and cathepsin

G. Immunity. 2000; 12: 201-10. DOI: https://doi.org/10.1016/S1074-7613(00)80173-9

Chen L, Shen Z, Wu J. Expression, purification and in vitro

antifungal activity of acidic mammalian chitinase against

Candida albicans, Aspergillus fumigatus and Trichophyton rubrum

strains. Clin Exp Dermatol. 2009; 34: 55-60.

Shoham S, Levitz SM. The immune response to fungal

infections. Br J Haematol. 2005; 129: 569-82. DOI: https://doi.org/10.1111/j.1365-2141.2005.05397.x

Philippe B, Ibrahim-Granet O, Prevost MC, Gougerot-

Pocidalo MA, Sánchez-Pérez M, Van der Meeren A, et al.

Killing of Aspergillus fumigatus by alveolar macrophages is

mediated by reactive oxidant intermediates. Infect Immun.

; 71: 3034-42.

Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young

RA, et al. The plasticity of dendritic cell responses to

pathogens and their components. Science. 2001; 294: 870-5. DOI: https://doi.org/10.1126/science.294.5543.870

Romani L. Immunity to fungal infections. Nat Rev Immunol.

; 4: 11-24.

Banchereau J, Steinman RM. Dendritic cells and the control

of immunity. Nature. 1998; 392: 245-52. DOI: https://doi.org/10.1038/32588

Roilides E, Tsaparidou S, Kadiltsoglou I, Sein T, Walsh TJ.

Interleukin-12 enhances antifungal activity of human

mononuclear phagocytes against Aspergillus fumigatus:

implications for a gamma interferon-independent pathway.

Infect Immun. 1999; 67: 3047-50. DOI: https://doi.org/10.1128/IAI.67.6.3047-3050.1999

Romani L, Mencacci A, Tonnetti L, Spaccapelo R, Cenci E,

Puccetti P, et al. IL-12 is both required and prognostic in vivo

for T helper type 1 differentiation in murine candidiasis. J

Immunol. 1994; 153: 5167-75.

Cenci E, Mencacci A, Del Sero G, Bacci A, Montagnoli C,

d'Ostiani CF, et al. Interleukin-4 causes susceptibility to

invasive pulmonary aspergillosis through suppression of

protective type I responses. J Infect Dis. 1999; 180: 1957-68. DOI: https://doi.org/10.1086/315142

Del Sero G, Mencacci A, Cenci E, d'Ostiani CF, Montagnoli

C, Bacci A, et al. Antifungal type 1 responses are upregulated

in IL-10-deficient mice. Microbes Infect. 1999; 1: 1169-80. DOI: https://doi.org/10.1016/S1286-4579(99)00245-2

Roilides E, Dimitriadou A, Kadiltsoglou I. IL-10 exerts

suppressive and enhancing effects on antifungal activity of

mononuclear phagocytes against Aspergillus fumigatus. J

Immunol. 1997; 158: 322-9.

Romani L, Puccetti P, Bistoni F. Interleukin-12 in infectious

diseases. Clin Microbiol Rev. 1997; 10: 611-36. DOI: https://doi.org/10.1128/CMR.10.4.611

Steele C, Rapaka RR, Metz A, Pop SM, Williams DL,

Gordon S, et al. The beta-glucan receptor dectin-1 recognizes

specific morphologies of Aspergillus fumigatus. PLoS Pathog.

; 1: e42.

Gersuk GM, Underhill, David M, Zhu L, Marr KA. Dectin-

and TLRs permit macrophages to distinguish between

different Aspergillus fumigatus cellular states. J Immunol. 2006;

: 3717-24.

Mehrad B, Strieter RM, Standiford TJ. Role of TNF-alpha

in pulmonary host defense in murine invasive aspergillosis.

J Immunol. 1999; 162: 1633-40. DOI: https://doi.org/10.4049/jimmunol.162.3.1633

Bellanger AP, Millon L, Khoufache K, Rivollet D, Bieche I,

Laurendeau I, et al. Aspergillus fumigatus germ tube growth

and not conidia ingestion induces expression of inflammatory

mediator genes in the human lung epithelial cell line A549.

J Med Microbiol. 2009; 58: 174-9. DOI: https://doi.org/10.1016/j.srt.2009.03.016

Brieland JK, Jackson C, Menzel F, et al. Cytokine networking

in lungs of immunocompetent mice in response to inhaled

Aspergillus fumigatus. Infect Immun. 2001; 69: 1554-60. DOI: https://doi.org/10.1128/IAI.69.3.1554-1560.2001

Romani L. Immunity to fungal infections. Nat Rev Immunol.

; 11: 275-88.

Vautier S, Sousa Mda G, Brown GD. C-type lectins, fungi

and Th17 responses. Cytokine Growth Factor Rev. 2010; 21:

-12.

Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement

of interleukin-17A for systemic anti-Candida albicans host

defense in mice. J Infect Dis. 2004; 190: 624-31. DOI: https://doi.org/10.1086/422329

Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM,

Schwiebert LM, et al. Requisite role for the dectin-1 betaglucan

receptor in pulmonary defense against Aspergillus

fumigatus. J Immunol. 2009; 182: 4938-46. DOI: https://doi.org/10.4049/jimmunol.0804250

Zenaro E, Donini M, Dusi S. Induction of Th1/Th17

immune response by Mycobacterium tuberculosis: role of

dectin-1, Mannose Receptor, and DC-SIGN. J Leukoc Biol.

; 86: 1393-401.

van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen

HJ, Cheng SC, Joosten I, et al. The macrophage mannose

receptor induces IL-17 in response to Candida albicans. Cell

Host Microbe. 2009; 5: 329-40.

Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio

S, Zelante T, et al. Immunity and tolerance to Aspergillus

involve functionally distinct regulatory T cells and tryptophan

catabolism. J Immunol. 2006; 176: 1712-23. DOI: https://doi.org/10.4049/jimmunol.176.3.1712

Dubourdeau M, Athman R, Balloy V. Aspergillus fumigatus

induces innate immune responses in alveolar macrophages

through the MAPK pathway independently of TLR2 and

TLR4. J Immunol. 2006; 177: 3994-4001. DOI: https://doi.org/10.4049/jimmunol.177.6.3994

Feldmesser M. Role of neutrophils in invasive aspergillosis.

Infect Imm. 2006; 74: 6514-6. DOI: https://doi.org/10.1128/IAI.01551-06

Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di

Francesco P, et al. Dendritic cells transport conidia and

hyphae of Aspergillus fumigatus from the airways to the

draining lymph nodes and initiate disparate Th responses to

the fungus. J Immunol. 2002; 168: 1362-71. DOI: https://doi.org/10.4049/jimmunol.168.3.1362

Bernard M, Latge JP. Aspergillus fumigatus cell wall:

composition and biosynthesis. Med Mycol. 2001; 39 Suppl 1: DOI: https://doi.org/10.1080/mmy.39.6.1.1

-17.

Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre

M, Lemoine J, et al. Molecular organization of the alkaliinsoluble

fraction of Aspergillus fumigatus cell wall. J Bioll

Chem. 2000; 275: 27594-607. DOI: https://doi.org/10.1074/jbc.M909975199

Lavigne LM, Albina JE, Reichner JS. Beta-glucan is a fungal

determinant for adhesion-dependent human neutrophil

functions. J Immunol. 2006; 177: 8667-75. DOI: https://doi.org/10.4049/jimmunol.177.12.8667

Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann

J, Ebel F. Toll-like receptor (TLR) 2 and TLR4 are essential

for Aspergillus-induced activation of murine macrophages.

Cell Microbiol. 2003; 5: 561-70. DOI: https://doi.org/10.1046/j.1462-5822.2003.00301.x

Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL,

Feldmesser M, et al. Aspergillus fumigatus triggers inflammatory

responses by stage-specific beta-glucan display. PLoS Pathog.

; 1: e30.

Brown GD, Herre J, Williams DL, Willment JA, Marshall

AS, Gordon S. Dectin-1 mediates the biological effects of

beta-glucans. J Exp Med. 2003; 197: 1119-24. DOI: https://doi.org/10.1084/jem.20021890

Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill

DM. Collaborative induction of inflammatory responses by

dectin-1 and Toll-like receptor 2. J Exp Med. 2003; 197:

-17.

Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz

SM. Toll-like receptor (TLR) signaling in response to

Aspergillus fumigatus. J Biol Chem. 2002; 277: 39320-6. DOI: https://doi.org/10.1074/jbc.M201683200

Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-

Janssen TJ, Jacobs LE, et al. Aspergillus fumigatus evades

immune recognition during germination through loss of

toll-like receptor-4-mediated signal transduction. J Infect

Dis. 2003; 188: 320-6.

Luther K, Torosantucci A, Brakhage AA, Heesemann J,

Ebel F. Phagocytosis of Aspergillus fumigatus conidia by

murine macrophages involves recognition by the Dectin-1

beta-glucan receptor and Toll-like receptor 2. Cell Microbiol.

; 9: 368-81.

Taylor PR, Brown GD, Reid DM, Willment JA, Martínez-

Pomares L, et al. The beta-glucan receptor, dectin-1, is

predominantly expressed on the surface of cells of the

monocyte/macrophage and neutrophil lineages. J Immunol.

; 169: 3876-82.

Willment JA, Marshall AS, Reid DM, Williams DL, Wong

SY, Gordon S, et al. The human beta-glucan receptor is

widely expressed and functionally equivalent to murine

Dectin-1 on primary cells. Eur J Immunol. 2005; 35: 1539-47. DOI: https://doi.org/10.1002/eji.200425725

Reid DM, Gow NA, Brown GD. Pattern recognition:

recent insights from Dectin-1. Curr Opin Immunol. 2009; 21:

-7.

Brown GD, Taylor PR, Reid DM, Willment JA, Williams

DL, Martínez-Pomares L, et al. Dectin-1 is a major betaglucan

receptor on macrophages. J Exp Med. 2002; 196: 407-12. DOI: https://doi.org/10.1084/jem.20020470

Brown GD, Gordon S. Immune recognition. A new receptor

for beta-glucans. Nature. 2001; 413: 36-7. DOI: https://doi.org/10.1038/35092620

Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment

JA, Taylor PR, et al. Syk kinase is required for collaborative

cytokine production induced through Dectin-1 and Tolllike

receptors. Eur J Immunol. 2008; 38: 500-6.

Serrano-Gómez D, Domínguez-Soto A, Ancochea J,

Jiménez-Heffernan JA, Leal JA, Corbi AL. Dendritic cellspecific

intercellular adhesion molecule 3-grabbing nonintegrin

mediates binding and internalization of Aspergillus

fumigatus conidia by dendritic cells and macrophages. J

Immunol. 2004; 173: 5635-43.

Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S,

et al. Fungal recognition enhances mannose receptor shedding

through dectin-1 engagement. J Biol Chem. 2011; 286: 7822- DOI: https://doi.org/10.1074/jbc.M110.185025

Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich

E, Grenet D, Stern M, et al. Phagocytosis and intracellular

fate of Aspergillus fumigatus conidia in alveolar macrophages.

Infect Immun. 2003; 71: 891-903. DOI: https://doi.org/10.1128/IAI.71.2.891-903.2003

Cathcart MK. Regulation of superoxide anion production

by NADPH oxidase in monocytes/macrophages: contributions

to atherosclerosis. Arterioscler Thromb Vasc Biol.

; 24: 23-8.

Underhill DM, Rossnagle E, Lowell CA, Simmons RM.

Dectin-1 activates Syk tyrosine kinase in a dynamic subset

of macrophages for reactive oxygen production. Blood. 2005;

: 2543-50.

Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M,

Findon H, et al. Dectin-1 is required for beta-glucan

recognition and control of fungal infection. Nat Immunol.

; 8: 31-8.

Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y,

Suzuki K, et al. in vivo role of myeloperoxidase for the host

defense. Jpn J Infect Dis. 2004; 57: S15.

Dzul-Rosado, K. R., Martínez-Campos, V., Peniche-Lara, G., & Zavala-Castro, J. E. (2012). Molecular half-full mechanisms by phagocityc cells on invasive Aspergilosis. Colombia Medica, 43(1), 95–102. https://doi.org/10.25100/cm.v43i1.1064

Downloads

Download data is not yet available.