Main Article Content


Rickettsia typhi is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against R. typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of Rickettsia typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi.

Gaspar Peniche Lara, Universidad Autónoma de Yucatán

Universidad Autónoma de Yucatán, Mexico

Unidad Interinstitucional de Investigación clínica y Epidemiológica, Facultad de Medicina

Karla R. Dzul Rosado, Universidad Autónoma de Yucatán

Universidad Autónoma de Yucatán, Mexico

Centro de Investigaciones Regionales “Dr Hideyo Noguchi”, Facultad de Medicina,


Jorge Zavala-Castro, Universidad Autónoma de Yucatán

Universidad Autónoma de Yucatán, México
Unidad Interinstitucional de Investigación clínica y Epidemiológica, Facultad de Medicina,
Peniche Lara, G., Dzul Rosado, K. R., Zavala Velásquez, J. E., & Zavala-Castro, J. (2012). Murine Typhus: Clinical and epidemiological aspects. Colombia Medica, 43(2), 175–180.

Roux V, Raoult D. Phylogenetic analysis of members of the ge¬nus Rickettsia using the gene encoding the outer-membrane pro¬tein rOmpB (ompB). Int J Sys Evol Microbiol 2000;50:1449-55

Gillespie J, Williams K, Shukla M, Snyder E, Nordberg E, et al. Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life. PLoS ONE. 2008; 3(4): e2018.

Martínez-Mendoza M. Historia del tifo epidémico desde la épo¬ca prehispánica hasta nuestros días. Sist Nac de Vig Epidemiol 2005: 22 (42):1-4

Boostrom A, Beier MS, Macaluso JA, Macaluso KR, Sprenger D, Hayes J, et al. Geographic association of Rickettsia felis-infected opossums with human murine typhus, Texas. Emerg Infect Dis. 2002;8(6):549-54.

Gikas A, Kokkini S, Tsioutis C, Athenessopoulos D, Balomenaki

E, Blasak S, et al. Murine typhus in children: clinical and labora¬tory features from 41 cases in Crete, Greece. Clin Microbiol Infect. 2009;15 Suppl 2:211-2.

Sorvillo Fj, Gondo B, Emmons R, et al. A suburban focus of endemic typhus in Los Angeles County: association witch sero¬positive domestic cats and opossums. AmJ Trop Med Hyg 1993: 269-73.

Walker TS. Rickettsial interactions with human endothelial cells in vitro: adherence and entry. Infect Immun 1984;44:205–210.

Renesto P, Samson L, Ogata H, et al. Identification of two pu¬tative Rickettsial adhesins by proteomic analysis. Res Microbiol 2006;157:605–612.

Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 2005;12(3), 1013–1023.

Chan YG, Cardwell MM, Hermanas TM, Uchiyama T, Marti¬nez JJ. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 2009;11:629–644.

Teysseire N, Boudier JA, Raoult D. Rickettsia conorii entry into Vero cells. Infect Immun 1995;63:366–374.

Walker DH, Feng HM, Popov VL. Rickettsial phospholipase A2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am J Trop Med Hyg. 2001 Dec;65(6):936-42.

Bolaños M, Angel A, Pérez J. Tifus endémico (muri¬no). Una enfermedad en la que pensar aquí y ahora. Med Clin 2004;122(10):383-9.

Castaneda, M. R., and S. Zia. The antigenic relationship between proteus X-19 and typhus rickettsiae. J. Exp. Med. 1933;58:55–62.

Kaplan JE, and Schonberger LB. The sensitivity of various sero¬logic tests in the diagnosis of Rocky Mountain spotted fever. Am. J. Trop. Med. Hyg. 1986;35:840–844

Dasch GA., Halle S. and Bourgeois AL. Sensitive microplate enzyme-linked immunosorbent assay for detection of antibodies against the scrub typhus rickettsia, Rickettsia tsutsugamushi. J. Clin. Microbiol. 1979;9:38–48.

Philip RN., Casper EA., Ormsbee RA., Peacock MG., and Burgdorfer W. Microimmunofluorescence test for the serological study of Rocky Mountain spotted fever and typhus. J. Clin. Micro¬biol. 1976;3:51–61.

Suto T. A ten years experience on diagnosis of rickettsial di¬seases using the indirect immunoperoxidase methods. Acta Virol. 1991;35:580–586.

Eremeeva ME., Beati L., Makarova VA., Fetisova NF., Tara¬sevich IV., Balayeva NM., and Raoult D. Astrakhan fever rickett¬siae: antigenic and genotypic analysis of isolates obtained from human and Rhipicephalus pumilio ticks. Am. J. Trop. Med. Hyg.

Rolain JM, Jensenius M, Raoult D. Rickettsial infections--a threat to travellers? Curr Opin Infect Dis. 2004;17(5):433-7.

da Costa PS, Brigatte ME, Greco DB. Antibodies to Rickett¬sia rickettsii, Rickettsia typhi, Coxiella burnetii, Bartonella hense¬lae, Bartonella quintana, and Ehrlichia chaffeensis among healthy population in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2005;100(8):853-9. Epub 2006 Jan 20.

Ripoll CM, Remondegui CE, Ordonez G, Arazamendi R, Fu¬saro H, Hyman MJ, et al. Evidence of rickettsial spotted fever and ehrlichial infections in a subtropical territory of Jujuy, Argentina. Am J Trop Med Hyg. 1999;61(2):350-4.


Download data is not yet available.
Received 2012-06-22
Accepted 2017-03-13
Published 2012-06-25