Main Article Content

Authors

Malaria is a disease induced by parasites of the Plasmodium genus, which are transmitted by Anopheles mosquitoes and represents a great socio-economic burden worldwide. Plasmodium vivax is the second species of malaria worldwide, but it is the most prevalent in Latin America and other regions of the planet. It is currently considered that vaccines represent a cost-effective strategy for controlling transmissible diseases and could complement other malaria control measures; however, the chemical and immunological complexity of the parasite has hindered development of effective vaccines. Recent availability of several genomes of Plasmodium species, as well as bioinformatics tools are allowing the selection of large numbers of proteins and analysis of their immune potential. Herein, we review recently developed strategies for discovery of novel antigens with potential for malaria vaccine development.

 

 

1. WHO. World malaria report 2011. Geneva: World Health Organization, 2011.

2. Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001; 64: 97-106.

3. Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, et al. Severe Plasmodium vivax malaria: A report on serial cases from bikaner in northwestern india. Am J Trop Med Hyg. 2009; 80: 194-8.

4. Lacerda MV, Hipolito JR, Passos LN. Chronic Plasmodium vivax infection in a patient with splenomegaly and severe thrombocytopenia. Rev Soc Bras Med Trop. 2008; 41: 522-3.

5. Feachem RGA, Phillips AA, Targett GA. Shrinking the malaria map: A prospectus on malaria elimination. Global health Sciencie, University of California, San Francisco.

6. Baird JK, Masbar S, Basri H, Tirtokusumo S, Subianto B, Hoffman SL. Age-dependent susceptibility to severe disease with primary exposure to Plasmodium falciparum. J Infect Dis. 1998; 178: 592-5.

7. Clyde DF. Immunity to falciparum and vivax malaria induced by irradiated sporozoites: A review of the university of maryland studies, 1971-75. Bull World Health Organ. 1990; 68(Suppl): 9-12.

8. Sabchareon A, Burnouf T, Ouattara D, Attanath P, BouharounTayoun H, Chantavanich P, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg. 1991; 45: 297-308.

9. Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG, Kabwende AL, et al. A phase 3 trial of RTS/ASO1 malaria vaccine in african infants. N Engl J Med. 2012; 367: 2284-95.

10. Jones TR, Ballou WR, Hoffman SL. Antibodies to the circumsporozoite protein and protective immunity to malaria sporozoites. Prog Clin Parasitol. 1993; 3:103-117.

11. Sedegah M, Sim BK, Mason C, Nutman T, Malik A, Roberts C, et al. Naturally acquired CD8+ cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein. J Immunol. 1992; 149: 966-71.

12. Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990; 172: 1633-41.

13. Kharazmi A, Jepsen S, Andersen BJ. Generation of reactive oxygen radicals by human phagocytic cells activated by Plasmodium falciparum. Scand J Immunol. 1987; 25: 335-41.

14. Mendis KN, Munesinghe YD, de Silva YN, Keragalla I, Carter R. Malaria transmission-blocking immunity induced by natural infections of Plasmodium vivax in humans. Infect Immun. 1987; 55: 369-72.

15. Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T, et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccine. 2010; 6: 97-106.

16. Pinder M, Moorthy VS, Akanmori BD, Genton B, Brown GV. MALVAC 2009: Progress and challenges in development of whole organism malaria vaccines for endemic countries, 3-4 June 2009, Dakar, Senegal. Vaccine. 2010; 28: 4695-702.

17. Herrera S, Fernandez OL, Vera O, Cardenas W, Ramirez O, Palacios R, et al. Phase i safety and immunogenicity trial of Plasmodium vivax CS derived long synthetic peptides adjuvanted with montanide ISA 720 or montanide ISA 51. Am J Trop Med Hyg. 2011; 84(Suppl 2): 12-20.

18. Arevalo-Herrera M, Chitnis C, Herrera S. Current status of Plasmodium vivax vaccine. Hum Vaccin. 2010; 6: 124-32.

19. Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the who rainbow table. Malar J. 2012; 11: 11.

20. Robinson K. Emerging trends in genetic-based medical diagnostics. Clin Leadersh Manag Rev. 2005; 19:E2.

21. Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, Bae E, et al. The drosophila gene disruption project: Progress using transposons with distinctive site specificities. Genetics. 2011;188: 731-43.

22. Qiu YL, Yu J. Azolla--a model organism for plant genomic studies. Genomics Proteomics Bioinformatics. 2003; 1: 15-25.

23. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008; 455: 757-63.

24.24. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002; 419: 498-511.

25. Wang D, Bodovitz S. Single cell analysis: The new frontier in ‘omics’. Trends Biotechnol. 2010; 28: 281-90.

26. Liang X, Teng A, Braun DM, Felgner J, Wang Y, Baker SI, et al. Transcriptionally active polymerase chain reaction (tap): High throughput gene expression using genome sequence data. J Biol Chem. 2002; 277: 3593-8.

27. Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012; 11: 189-209.

28. Moorthy VS, Good MF, Hill AV. Malaria vaccine developments. Lancet. 2004; 363: 150-6.

29. Vigil A, Davies DH, Felgner PL. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol. 2010; 5: 241-51.

30. Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL, Shatney L, et al. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc Natl Acad Sci U S A. 2003; 100: 9952-7.

31. Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A, Weiss GE, et al. A prospective analysis of the ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A. 2010; 107: 6958-63.

32. Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics. 2008; 8: 4680-94.

33. Molina DM, Finney OC, Arevalo-Herrera M, Herrera S, Felgner PL, Gardner MJ, et al. Plasmodium vivax pre-erythrocyticstage antigen discovery: Exploiting naturally acquired humoral responses. Am J Trop Med Hyg. 2012; 87(3): 460-9

34. Wu H, Ge J, Uttamchandani M, Yao SQ. Small molecule microarrays: The first decade and beyond. Chem Commun (Camb). 2011; 47: 5664-70.

35. Uttamchandani M, Yao SQ. The expanding world of small molecule microarrays. Methods Mol Biol. 2010; 669: 1-15.

36. Singh S, Soe S, Roussilhon C, Corradin G, Druilhe P. Plasmodium falciparum merozoite surface protein 6 displays multiple targets for naturally occurring antibodies that mediate monocytedependent parasite killing. Infect Immun. 2005; 73: 1235-8.

37. Tripet B, Kao DJ, Jeffers SA, Holmes KV, Hodges RS. Template-based coiled-coil antigens elicit neutralizing antibodies to the sars-coronavirus. J Struct Biol. 2006;155:176-94.

38. Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature. 1986; 322: 747-8.

39. Corradin G, Villard V, Kajava AV. Protein structure based strategies for antigen discovery and vaccine development against malaria and other pathogens. Endocr Metab Immune Disord Drug Targets. 2007; 7: 259-65.

40. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991; 252: 1162-4.

41. Villard V, Agak GW, Frank G, Jafarshad A, Servis C, Nebie I, et al. Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif. Plos One. 2007; 2: e645.

42. Kulangara C, Kajava AV, Corradin G, Felger I. Sequence conservation in Plasmodium falciparum alpha-helical coiled coil domains proposed for vaccine development. Plos One. 2009; 4: e5419.

43. Olugbile S, Kulangara C, Bang G, Bertholet S, Suzarte E, Villard V, et al. Vaccine potentials of an intrinsically unstructured fragment derived from the blood stage-associated Plasmodium falciparum protein pff0165c. Infect Immun. 2009; 77: 5701-9.

44. Olugbile S, Villard V, Bertholet S, Jafarshad A, Kulangara C, Roussilhon C, et al. Malaria vaccine candidate: Design of a multivalent subunit alpha-helical coiled coil poly-epitope. Vaccine. 2011; 29: 7090-9.

45. Mason JM, Arndt KM. Coiled coil domains: Stability, specificity, and biological implications. Chembiochem : Europ J Chem Biol. 2004; 5(2): 170-6.

46. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Kone AK, Guindo AB, et al. Safety and immunogenicity of an AMA 1 malaria vaccine in Malian children: Results of a phase 1 randomized controlled trial. Plos One. 2010; 5: e9041.

47. Sheehy SH, Duncan CJ, Elias SC, Collins KA, Ewer KJ, Spencer AJ, et al. Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in CHAD 63 and MVA vaccine vectors. Mol Ther. 2011;19: 2269-76.

48. McCarthy JS, Marjason J, Elliott S, Fahey P, Bang G, Malkin E, et al. A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 formulated with Montanide(r) ISA 720. Plos One. 2011; 6(9): 24413.

49. Belard S, Issifou S, Hounkpatin AB, Schaumburg F, Ngoa UA, Esen M, et al. A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in african children. Plos One. 2011; 6: e22525.

50. Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM, et al. Safety and elicitation of humoral and cellular responses in Colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg. 2005; 73: 3-9.

51. Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with Montanide ISA 51. Plos One. 2008; 3(7): 2636.

52. Yoon D, Kim H, Suh-Kim H, Park RW, Lee K. Differentially coexpressed interacting protein pairs discriminate samples under distinct stages of hiv type 1 infection. BMC Syst Biol. 2011; 5 (Suppl) 2:S1.

53. Davies DH, Liang X, Hernandez JE, Randall A, Hirst S, Mu Y, et al. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A. 2005; 102: 547-52. Céspedes N et al / Colombia Médica - Vol. 44Nº 2, 2013 (Apr- June)128

54. Luevano M, Bernard HU, Barrera-Saldana HA, Trevino V, Garcia-Carranca A, Villa LL, et al. High-throughput profiling of the humoral immune responses against thirteen human papillomavirus types by proteome microarrays. Virol. 2010; 405: 31-40.

55. Kalantari-Dehaghi M, Chun S, Chentoufi AA, Pablo J, Liang L, Dasgupta G, et al. Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J Virol. 2012; 86: 4328-39.

56. Vizoso Pinto MG, Pfrepper KI, Janke T, Noelting C, Sander M, Lueking A, et al. A systematic approach for the identification of novel, serologically reactive recombinant varicella-zoster virus (VZV) antigens. Virol J. 2010; 7: 165.

57. Fernandez S, Cisney ED, Tikhonov AP, Schweitzer B, Putnak RJ, Simmons M, et al. Antibody recognition of the dengue virus proteome and implications for development of vaccines. Clin Vaccine Immunol. 2011; 18: 523-32.

58. Kunnath-Velayudhan S, Davidow AL, Wang HY, Molina DM, Huynh VT, Salamon H, et al. Proteome-scale antibody responses and outcome of Mycobacterium tuberculosis infection in nonhuman primates and in tuberculosis patients. J Infect Dis. 2012; 206: 697-705

59. Ceroni A, Sibani S, Baiker A, Pothineni VR, Bailer SM, LaBaer J, et al. Systematic analysis of the IgG antibody immune response against varicella zoster virus (VZV) using a self-assembled protein microarray. Mol Biosyst. 2010; 6: 1604-10.

60. Vieira ML, Pimenta DC, de Morais ZM, Vasconcellos SA, Nascimento AL. Proteome analysis of leptospira interrogans virulent strain. Open Microbiol J. 2009; 3: 69-74.

Céspedes, N., Vallejo, A., Arévalo-Herrera, M., & Herrera, S. (2013). Malaria vaccines: high-throughput tools for antigens discovery with potential for their development. Colombia Medica, 44(2), 121–128. https://doi.org/10.25100/cm.v44i2.1201

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.