Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
Main Article Content
Background: The information on gene expression obtained from databases has made possible the extraction and analysis of data related to several molecular processes involving not only brain homeostasis but its disruption in some neuropathologies, principally in Down syndrome and Alzheimer's disease.
- Brain
- cerebral cortex
- homeostasis
- Down Syndrome critical region
- oligonucleotide array sequence analysis
- transcriptome
- gene expression profiling.
Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77: 624–638. DOI: https://doi.org/10.1016/j.neuron.2013.02.008
Johnson M, Kawasawa M, Mason C, Krsnik Z, Coppola G, et al. Bogdanovic´ D Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009; 62: 494–509. DOI: https://doi.org/10.1016/j.neuron.2009.03.027
Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11: 1271–1282. DOI: https://doi.org/10.1038/nn.2207
Nieuwenhuis-Mark R Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions. Res Dev Disabil. 2009; 30: 827–838. DOI: https://doi.org/10.1016/j.ridd.2009.01.010
Abbeduto L, McDuffie A. Genetic Syndromes Associated with Intellectual Disabilities. In: Handbook of Medical Neuropsychology: Applications of Cognitive Neuroscience. Armstrong, CL, Morrow L (Eds) New York: Springer; 2010. pp. 193–221. DOI: https://doi.org/10.1007/978-1-4419-1364-7_11
Korenberg Julie R, Kawashima Hiroko, Pulst Stefan-M, Ikeuchi T, Ogasawara N, Yamamoto K, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Human Genet. 1990; 47: 236–46.
Montoya J, Soto J, Satizábal J, Sánchez A, García Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colomb Med (Cali). 2011; 42: 26–38. DOI: https://doi.org/10.25100/cm.v42i1.748
Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001; 61: 59–70. DOI: https://doi.org/10.1007/978-3-7091-6262-0_5
Ferrando-Miguel R, Cheon M, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5) Amino Acids. 2004; 26: 255–61. DOI: https://doi.org/10.1007/s00726-004-0065-9
VanGilder R, Huber J, Rosen C, Barr T. The transcriptome of cerebral ischemia. Brain Res Bull. 2012; 88: 313–9. DOI: https://doi.org/10.1016/j.brainresbull.2012.02.002
Zeng H, Shen E, Hohmann J, Oh S, Bernard A, Royall J, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012; 149: 483–96. DOI: https://doi.org/10.1016/j.cell.2012.02.052
Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003; 2: 209–17.
Montoya J, Peña A, Satizábal J, García-Vallejo F. In silico systemic analysis of the differential expression of genes located in críticalregion of Down syndrome in the human brain. Rev Med. 2012; 20: 15–26.
Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, Epstein CJ, Yamakawa K. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13: 1333–40. DOI: https://doi.org/10.1093/hmg/ddh154
Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development. 2009; 136: 2121-1. DOI: https://doi.org/10.1242/dev.032649
Ferrando-Miguel R, Cheon MS, Yang JW, Lubec G. Overexpression of transcription factor BACH1 in fetal Down syndrome brain. J Neural Transm Suppl. 2003; 67: 193–205. DOI: https://doi.org/10.1007/978-3-7091-6721-2_17
Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, et al. Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Dev Cell. 2013; 24: 600–11. DOI: https://doi.org/10.1016/j.devcel.2013.02.011
Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-? and reactive oxygen species. Nat Med. 2012; 18(11): 1693–8. DOI: https://doi.org/10.1038/nm.2960
Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 2012; 31(18): 3655–66. DOI: https://doi.org/10.1038/emboj.2012.190
Ermak G, Pritchard MA, Dronjak S, Niu B, Davies KJ. Do RCAN1 proteins link chronic stress with neurodegeneration. FASEB J. 2011; 25(10): 3306–11. DOI: https://doi.org/10.1096/fj.11-185728
Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, et al. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis. 2012; 46(1): 190–200. DOI: https://doi.org/10.1016/j.nbd.2012.01.007
Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep. 2009; 42(1): 6–15. DOI: https://doi.org/10.5483/BMBRep.2009.42.1.006
Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012; 6: 14. DOI: https://doi.org/10.3389/fnbeh.2012.00014
Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS ONE. 2011; 6: 21852. DOI: https://doi.org/10.1371/journal.pone.0021852
Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011; 278: 236–45. DOI: https://doi.org/10.1111/j.1742-4658.2010.07955.x
Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008; 86(3): 141–55. DOI: https://doi.org/10.1016/j.pneurobio.2008.09.004
Kistler P, Ropper A, Martin J. Enfermedades cerebrovasculares. En: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson L, Loscalzo J (eds.). Harrison Principios de Medicina Interna. 17a edición. Barcelona: McGraw-Hill; 2010. pp. 2570–96.
Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, et al. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet. 2005; 14: 373–84. DOI: https://doi.org/10.1093/hmg/ddi033
Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006; 97(1): 104–9. DOI: https://doi.org/10.1111/j.1471-4159.2005.03624.x
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem. 2014; 155: 217–26. DOI: https://doi.org/10.1093/jb/mvu006
Arron JR, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006; 441: 595–600. DOI: https://doi.org/10.1038/nature04678
Downloads
- Julio César Montoya, Juliana Soto, José María Satizábal, Adalberto Sánchez, Felipe García, Genomic study of the critical region of chromosome 21 associated to Down syndrome , Colombia Medica: Vol. 42 No. 1 (2011)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use