Main Article Content

Authors

Background:

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that mainly affects women, characterized by the production of autoantibodies. Its causal agent is unknown, but the combination of environmental, hormonal and genetic factors may favor the development of the disease. Parvovirus B19 has been associated with the development of SLE, since it induces the production of anti-single stranded DNA antibodies. It is unknown whether PV-B19 infection is an environmental factor that trigger or reactivate SLE in the Mexican Mayan population.

Aim:

A preliminary serological and molecular study of PV-B19 infection in Mayan women with established SLE was done.

Methods:

IgG and IgM anti PV-B19 were evaluated in 66 SLE patients and 66 control subjects, all women of Mayan origin. Viral DNA and viral load were analyzed by qPCR.

Results:

Insignificant levels of IgM were observed in 14.3% (4/28) of the patients and 11.4% (4/35) of control subjects. IgG was detected in 82.1% (23/28) of the patients and 82.9% (29/35) of control subjects, but were significantly higher in patients. Viral DNA was found in 86.0% (57/66) of the patients and 81.0% (54/66) of control subjects. Viral load, quantified in 28/66 patients and 31/66 controls which were positive for IgM and IgG, was significantly higher in controls.

Conclusion:

The high prevalence of PV-B19 in Yucatan, and the presence of IgM, IgG, and viral load in Mayan women with established SLE suggest that PV-B19 infection could be an environmental factor to trigger or reactivate SLE.

Guillermo Valencia Pacheco, Universidad Autónoma de Yucatán. Mérida, Yucatán, México

Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi

Yumi Elena Nakazawa Ueji, Universidad Autónoma de Yucatán. Mérida, Yucatán, México

Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi

Edwin Arturo Rodríguez Dzul, Universidad Autónoma de Yucatán. Mérida, Yucatán, México

Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi

Angélica Vanessa Angulo Ramírez, Hospital General Dr. Agustín O’Horá, Servicios de Salud de Yucatán (SSY)

Hospital General Dr. Agustín O’Horá, Servicios de Salud de Yucatán (SSY)

Ricardo Francisco López Villanueva, Hospital General Regional, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Servicios de Salud de Yucatán (SSY). Mérida, Yucatán, México

Hospital General Regional, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Servicios de Salud de Yucatán (SSY). Mérida, Yucatán, México

Irma Guadalupe Quintal Ortíz, Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, de la Universidad Autónoma de Yucatán

Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán.

Elsy Pilar Rosado Paredes, Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, de la Universidad Autónoma de Yucatán

Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, de la Universidad Autónoma de Yucatán

Vyse TJ, Kotzin BL. Genetic susceptibility to systemic Lupus Erythematosus. Annu Rev Immunol. 1998; 16: 261-292. DOI: https://doi.org/10.1146/annurev.immunol.16.1.261

Lispky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol. 2001; 2:764-766. DOI: https://doi.org/10.1038/ni0901-764

Crispín JC, Nick S, Liossis C, Kis-Toth K, Lieberman, LA, Kyttaris Y, et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med. 2010; 16(2):47-57. DOI: https://doi.org/10.1016/j.molmed.2009.12.005

Danchencho N, Satia JA, Anthony SM. Lupus around the world. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus. 2006; 15:308-318. DOI: https://doi.org/10.1191/0961203306lu2305xx

Jakes R, Bae S, Louthrenoo W, Mok C, Navarra S, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality. Arthritis Care Res (Hoboken). 2012; 64:159-68. DOI: https://doi.org/10.1002/acr.20683

Yang N, Li H, Criswell LA, Gregersen PK, Alarcon-Riquelme ME, Kittles R, et al. Examination of ancestry and ethnic affiliation using highly informative diallelic DNA markers: application to diverse and admixed populations and implications for clinical epidemiology and forensic medicine. Hum Genet, 2005; 118:382-392. DOI: https://doi.org/10.1007/s00439-005-0012-1

Silva-Zolezzi I, Hidalgo-Miranda A, Estrada-Gil J, Fernandez-Lopez JC, Uribe-Figueroa L, Contreras A, et al. Analysis of genomic diversity in Mexican Mestizo population to develop genomic medicine in Mexico. Proc Natl Acad Sci U S A. 2009; 26:106(21):8611-6. DOI: https://doi.org/10.1073/pnas.0903045106

Peláez-Ballestas I, Sanin L, Moreno-Montoya J, Alvarez-Nemegyei J, Burgos-Vargas R, Garza-Elizondo M, et al. Epidemiology of the rheumatic diseases in Mexico. A Study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl. 2011; 86:3-8. DOI: https://doi.org/10.3899/jrheum.100951

Álvarez-Nemegyei J, Peláez-Ballestas I, Sanin L, Cardel M, Ramirez-Angulo A, Goycochea-Robles M. Prevalence of musculoskeletal pain and rheumatic diseases in the southeastern region of Mexico. A COPCORD-Based community survey. J Rheumatol Suppl. 2011; 86:21-5. DOI: https://doi.org/10.3899/jrheum.100954

Esposito S, Bosis S, Semino S, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014; 33(9): 1467-1475. DOI: https://doi.org/10.1007/s10096-014-2098-7

Cooper G, Gilbert K, Greidinger E, James J, Pfau J, Reinlib L, Richardson B, Rose N. Recent advances and opportunities in research on Lupus: environmental influences and mechanisms of disease. Environ Health Perspect. 2008; 116 (6): 695-702. DOI: https://doi.org/10.1289/ehp.11092

Rigante D, Benedetta M, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoinmun Rev. 2014; 13: 96-102. DOI: https://doi.org/10.1016/j.autrev.2013.09.004

Cossart YE, Cant E, Field AM, Widdows D. Parvovirus-like particles in human sera. Lancet. 1975; 11(1): 72-73. DOI: https://doi.org/10.1016/S0140-6736(75)91074-0

Ozawa K, Young N. Characterization of capsid and non-capsid proteins of B19 parvovirus propagated in human erythroid bone marrow culture. J Virol. 1987; 61: 2627-2630. DOI: https://doi.org/10.1128/jvi.61.8.2627-2630.1987

Servant A, Laperche S, Lallemand F, Marinho V, De Saint Maur G, Meritet JF, et al. Genetic diversity within human erythroviruses: identification of three genotypes. J Virol. 2002; 76: 9124-9134. DOI: https://doi.org/10.1128/JVI.76.18.9124-9134.2002

Nguyen QT, Wong S, Heegaard ED, Brown KE. Identification and characterization of a second novel human erythovirus variant, A6. Virology. 2002; 301:374-380. DOI: https://doi.org/10.1006/viro.2002.1585

Liefeldt L, Plentz A, Klempa B, Kershaw O, Endres AS, Raab U. et al. Recurrent high level parvovirus B19/genotype 2 viremia in a renal transplant recipient analyzed by real-time PCR for simultaneous detection of genotypes 1 to 3. J Med Virology. 2005; 75: 161-169. DOI: https://doi.org/10.1002/jmv.20251

Sanabani S, Neto WK, Pereira J, Sabino EC. Sequence variability of human erythrovirus present in bone marow of Brazilian patients with various parvovirus B19-related hematological symptoms. J. Clin Microbiol. 2006; 44: 604-606. DOI: https://doi.org/10.1128/JCM.44.2.604-606.2006

Cohen B, Gandhi J, Clewley J. Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing. J Gen Virol. 2006; 36: 152-155. DOI: https://doi.org/10.1016/j.jcv.2006.01.011

Corcoran C, Hardie D, Yeats J, Smuts H. Genetic variants of human parvovirus B19 in South Africa: cocirculation of three genotypes and identification of a novel subtype of genotype 1. J Clin Microbiol. 2010; 48: 137-142. DOI: https://doi.org/10.1128/JCM.00610-09

Hübschen JM, Mihneva Z, Mentis AF, Schneider F, Aboudy Y, Grossman Z, et al. Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of genotype 1 and suggests the spread of genotype 3b. J Clin Microbiol. 2009; 47: 3735-3738. DOI: https://doi.org/10.1128/JCM.01201-09

Toan NL, Duechting A, Kremsner PG, Song le H, Ebinger M, Aberle S, et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J Gen Virol. 2006; 87: 2941-2949. DOI: https://doi.org/10.1099/vir.0.82037-0

Chorba T, Coccia P, Holman RC, Tattersall P, Anderson LJ, Sudman J, et al. The role of parvovirus B19 in aplastic crisis and erythema infectiosum (fifth disease). J Infect Dis.1986; 154: 383-93. DOI: https://doi.org/10.1093/infdis/154.3.383

Wu C-g, Mason B, Jong J, Erdman D, McKernan L, Oakley M, et al. Parvovirus B19 transmission by heat-treated clotting factor concentrates. Transfusion. 2005; 45: 1003-10. DOI: https://doi.org/10.1111/j.1537-2995.2005.04387.x

Prowse C, Ludlam CA, Yap PL. Human parvovirus B19 and blood products. Vox Sang. 1997; 72:1-10. DOI: https://doi.org/10.1159/000461949

Brown KE, Anderson SM, Youmg N. Erythrocyte P antigen cellular receptor of B19 parvovirus. Science. 1993; 262:114-17. DOI: https://doi.org/10.1126/science.8211117

Broliden K, Tolfvenstam T. Clinical aspects of parvovirus B19 infection. J Intern Med. 2006; 260: 285-304. DOI: https://doi.org/10.1111/j.1365-2796.2006.01697.x

Aslanidis S, Pyrpasopoulou A, Kontotasios K, Doumas S, Zamboulis C. Parvovirus B19 infection and systemic lupus erythematosus: Activation of an aberrant pathway? Eur J Intern Med. 2008; 19: 314-318. DOI: https://doi.org/10.1016/j.ejim.2007.09.013

Pavlovic M, Kats A, Cavallo M, Shoenfeld Y. Clinical and Molecular Evidence for the Association of SLE with parvovirus B19. Lupus. 2010; 19: 783-792. DOI: https://doi.org/10.1177/0961203310365715

Cohen BJ, Buckley MM. The prevalence of antibody to human parvovirus B19 in England and Wales. J Med Microbiol. 1988; 25: 151-3. DOI: https://doi.org/10.1099/00222615-25-2-151

Kelly HA, Siebert D, Hammond R, et al. The age-specific prevalence of human parvovirus immunity in Victoria, Australia compared with other parts of the world. Epidemiol Infect. 2000; 124: 449-57. DOI: https://doi.org/10.1017/S0950268899003817

Nabae K, Satoh H, et al . Estimating the risk of parvovirus B19 infection in blood donorss and pregnant women in Japan. Plos One. 2014; 9: 1-8. DOI: https://doi.org/10.1371/journal.pone.0092519

Enders M, Weidner A, Enders G. Current epidemiological aspects of human parvovirus B19 infection during pregnancy and childhood in the western part of Germany. Epidemiol Infect. 2007; 135: 563-569. DOI: https://doi.org/10.1017/S095026880600731X

Tapia H, Barriga G, Castillo N. La infección por Parvovirus B19 en México. Rev Mex Patol Clín. 1995; 42(4): 160-163.

Vera L, Gonzalez P, Valadez N, Kancab R, Pavia N, Moguel W, Alonso L, Quintal I, Paredes E. Seroprevalence of parvovirus B19 and associated factors in pregnant women of rural communities of Yucatan, Mexico. Rev Clín Univ Costa Rica. Congreso Mesoamericano de Ciencias Médicas. 2013; 3: 1-2.

Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; 40: 1725. DOI: https://doi.org/10.1002/art.1780400928

Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI: a disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992; 35: 630-640. DOI: https://doi.org/10.1002/art.1780350606

Schwarz TF, Jäger G. A recombinant immunoblot and Elisa for detection of acute Parvovirus B 19 infection. Zbl Bakt. 1994; 280: 526-533. DOI: https://doi.org/10.1016/S0934-8840(11)80513-X

Sambrook J, Fritch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Plainview, N.Y.: Cold Spring Harbor Laboratory Press; 1989.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al . The MIQE guidelines minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55: 611-622. DOI: https://doi.org/10.1373/clinchem.2008.112797

Bonvicini F, Manaresi E, Bua G, Venturoli S, Gallinela G. Keeping pace with Parvovirus B19 genetic variability: a multiplex genotype-specific quantitative PCR assay. J Clin Microbiol. 2013; 51(11): 3753-3759. DOI: https://doi.org/10.1128/JCM.01970-13

Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013; 3(3):71-85.

Corpet F. Multiple sequence alignment with hierarchical clustering. Nucl Acids Res. 1988; 16(22): 10881-90. DOI: https://doi.org/10.1093/nar/16.22.10881

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000; 7(1-2):203-14. DOI: https://doi.org/10.1089/10665270050081478

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for production MegaBLAST searches. Bioinformatics. 2008; 24:1757-1764. DOI: https://doi.org/10.1093/bioinformatics/btn322

Modrov S, Dorsch S. Antibody response in parvovirus B19 infected patients. Pathol Biol. 2002; 50: 326-31. DOI: https://doi.org/10.1016/S0369-8114(02)00302-4

Anderson LJ, Tsou C, Parker RA, et al. Detection of antibodies and antigens of human parvovirus B19 by enzyme-linked immunosorbent assay. J Clin Microbiol. 1986; 24: 522-526. DOI: https://doi.org/10.1128/jcm.24.4.522-526.1986

Erdman DD, Usher MJ, Tsou C, et al. Human parvovirus B19 specific IgG, IgA and IgM antibodies and DNA in serum specimens from persons with erythema infectiosum. J Med Virol. 1991; 35: 110-115. DOI: https://doi.org/10.1002/jmv.1890350207

Cope AP, Jones A, Brozovic M, Shafi MS, Maini RN. Possible induction of systemic lupus erythematosus by human parvovirus. Ann Rheum Dis. 1992; 51: 803-804. DOI: https://doi.org/10.1136/ard.51.6.803

Chassagne PL, Mejjad O, Gourmelen O, Moore N, Le Loet X, Deshayes P. Exacerbation of systemic lupus erythematosus during human parvovirus B19 infection. Br J Rheumatol. 1993; 32: 158-159. DOI: https://doi.org/10.1093/rheumatology/32.2.158

Ramos-Casals M, Cuadrado MK, Alba P. Sanna G, Brito-Zerron P. Bertolaccini L, et al . Acute viral infections in patients with systemic lupus erythematosus. Description of 23 cases and review of the literature. Medicine (Baltimore). 2008; 87: 311-8. DOI: https://doi.org/10.1097/MD.0b013e31818ec711

Pugliese A, Beltramo T, Torre D, Roccatello D. Parvovirus B19 and immune disordes. Cell Biochem Funct. 2007; 25: 639-641. DOI: https://doi.org/10.1002/cbf.1364

Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients; susceptibility factors and preventive strategies. Lupus. 2013; 22: 1286-1294. DOI: https://doi.org/10.1177/0961203313493032

Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014; 33: 1467-1475. DOI: https://doi.org/10.1007/s10096-014-2098-7

Kumar S, Gupta RM, Sen S, Sarkar RS, Philip J, Kotwal A, Sumathi SH. Seroprevalence of human parvovirus B19 in healthy blood donors. Med J Armed Forces India. 2013; 69: 268-272. DOI: https://doi.org/10.1016/j.mjafi.2012.11.009

Antezana A, Kyster I, et al. A case of encephalopathy in an immunocompetent adult with persistent parvovirus B19 viremia. Open Neurol J. 2015; 9: 1-9.. DOI: https://doi.org/10.2174/1874205X01509010059

Valencia Pacheco, G., Nakazawa Ueji, Y. E., Rodríguez Dzul, E. A., Angulo Ramírez, A. V., López Villanueva, R. F., Quintal Ortíz, I. G., & Rosado Paredes, E. P. (2017). Serological and molecular analysis of parvovirus B19 infection in Mayan women with systemic lupus erythematosus in Mexico. Colombia Medica, 48(3), 105–112. https://doi.org/10.25100/cm.v48i3.2981

Downloads

Download data is not yet available.