Main Article Content

Authors

Objective:

To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei).

Methods:

Twenty eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: and after the lesion (control), at 24 hours, 96 hours, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN.

Results:

In the cortex contralateral to the lesion, immunoreactivity was diminished. This was most notable in the supragranular layers 24 hours post ischemia. After 96 hours, there was a generalized diminishment of the inmmunoreactivity in supra and infragranular layers. At 10 and 20 days, the tissue recovered some NeuN immunoreactivity, but there were set changes in the VI layer.

Conclusion:

The immunoreactive changes to NeuN support the process of interhemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion.

 

Laura Potes, Universidad Icesi, Cali, Colombia. Fundación Valle del Lili, Cali, Colombia.

Grupo de Investigación Biomédica Universidad ICESI, Cali, Colombia.

John Umbarila, Fundación Innovación y Ciencia por Colombia –FICC-, Bogotá, Colombia.

Centro de Investigación, Innovación y Desarrollo –CIID- Fundación Innovación y Ciencia por Colombia –FICC-, Bogotá, Colombia.

Cesar Augusto Arango-Dávila, Fundación Valle del Lili

-Fundación Valle del Lili

-Grupo de Investigación Biomédica Universidad ICESI, Cali,

Colombia.

Beatriz E Munoz, Pontificia Universidad Javeriana Cali - Colombia

Grupo Medición y Evaluación Psicológica Pontificia Universidad Javeriana, Cali, Colombia

Daniel Manrique Castaño, Pontificia Universidad Javeriana Cali - Colombia

Grupo Medición y Evaluación Psicológica Pontificia Universidad Javeriana, Cali, Colombia.

Centro de Investigación, Innovación y Desarrollo –CIID- Fundación Innovación y Ciencia por Colombia –FICC-, Bogotá, Colombia.

Anderson CS, Carter KN, Hackett ML, Feigin V, Barber PA, Broad JB, et al. Trends in stroke incidence in Auckland, New Zealand, during 1981 to 2003. Stroke. 2005; 36: 2087-2093. DOI: https://doi.org/10.1161/01.STR.0000181079.42690.bf

Steinberg BA, Augustine JR. Behavioral, anatomical, and psysiological aspects of recovery of motor function following stroke. Brain Res Rev. 1997; 25: 125-132. DOI: https://doi.org/10.1016/S0165-0173(97)00013-1

Brea D, Sobrino T, Ramos-Cabrer P, Castillo, J. Reorganización de la vascularización cerebral tras la isquemia. Rev Neurol. 2009; 40: 645-654. DOI: https://doi.org/10.33588/rn.4912.2009564

Cramer SC, Bastings EP. Mapping clinically relevant plasticity after stroke. Neuropharmacology 2000; 39: 842-851. DOI: https://doi.org/10.1016/S0028-3908(99)00258-0

Sicard KM, Henninger N, Fischer M, Duong TQ, Ferris CF. Differential recovery of multimodal MRI and behavior after transient focal ceberal ischemia in rats. J Cereb Blood Flow Metab. 2006; 26: 1451-1462. DOI: https://doi.org/10.1038/sj.jcbfm.9600299

Prieto-Arribas R, Moreno-Gutiérrez A, Simal-Hernández P, Pascual-Garvi JM, Matías-Guiu J, Roda JM, Barcia-Albacar JA. Modelos experimentales de isquemia cerebral. Rev Neurol. 2008; 47: 414-26. DOI: https://doi.org/10.33588/rn.4708.2008233

Reggia JA. Neurocomputational model of the remote effects of focal brain damage. Med Eng Phys. 2004; 26: 711-722. DOI: https://doi.org/10.1016/j.medengphy.2004.06.010

Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganization in the adult brain. Lancet Neurol. 2003; 2: 493-502. DOI: https://doi.org/10.1016/S1474-4422(03)00485-X

Durukan A, Tatlisumak T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007; 87: 179-197. DOI: https://doi.org/10.1016/j.pbb.2007.04.015

Wolf P, D’Agostino R, O’Neal M, Sytkowski P, Kase C, Belanger A, Kannel WB. Secular trends in stroke incidence and mortality, the Framingham Study. Stroke. 1992; 23: 1551-5. DOI: https://doi.org/10.1161/01.STR.23.11.1551

Barker S, Feigin V. The Impact of Neuropsychological Deficits on Functional Stroke Outcomes Neuropsychol Rev. 2006; 16: 53-64. DOI: https://doi.org/10.1007/s11065-006-9007-5

Caoa M, Ferraria M, PatellaaÇ R, Marrab C, Rasura M. Neuropsychological findings in young-adult stroke patients. Arch Clin Neuropsychol. 2007; 22: 133-142. DOI: https://doi.org/10.1016/j.acn.2006.09.005

Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003; 2: 43-53. DOI: https://doi.org/10.1016/S1474-4422(03)00266-7

Sakai N, Yanai K, Ryu JH, Nagasawa H, Hasegawa T, Sasaki T, Kogure K, Watanabe T. Behavioral studies on rats with transient cerebral ischemia induced by occlusion of the middle cerebral artery. Behav Brain Res. 1996; 77: 181-8. DOI: https://doi.org/10.1016/0166-4328(95)00232-4

Van Zandvoort MJE, de Kort PLM., van der Worp HB, Jansen BPW, Algra A, de Haan EHF, Kappelle LJ. The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology. 2005; 64: 821-827. DOI: https://doi.org/10.1212/01.WNL.0000152984.28420.5A

Arango-Dávila CA, Escobar-Betancourt M, Cardona-Gómez GP, Pimienta-Jiménez H. Fisiopatología de la isquemia cerebral focal: aspectos básicos y proyección a la clínica. Rev Neurol. 2004; 39: 156-165. DOI: https://doi.org/10.33588/rn.3902.2004012

Arango-Dávila CA, Escobar-Betancourt MI, Buriticá E, Pimienta H. Cambios exofocales en la isquemia cerebral focal experimental: una visión experimental y su correlato clínico. Colomb Med. 2008; 39: 85-94. DOI: https://doi.org/10.25100/cm.v39i3Supl3.610

Bütefisch CM, Kleiser R, Seitz RJ. Post-lesional cerebral reorganization: Evidence from functional neuroimaging and transcranial magnetic stimulation. J Physiol. 2006; 99: 437-454. DOI: https://doi.org/10.1016/j.jphysparis.2006.03.001

Alonso M. Fisiopatología de la isquemia cerebral. URL: http://www.acnweb.org/guia/g8cap1.pdf

Nagasawa H, Kogure K. Exofocal postischemic neuronal death in the rat brain. CYRIC Ann Rep 1990: 124-234.

Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G. Functionaldifferentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab. 2000; 20: 1149-1165. DOI: https://doi.org/10.1097/00004647-200008000-00001

Zhou C, Shimazu T, Durduran T, Luckl J, Kimberg DY, Yu G, et al. Actue functional recovery of cerebral blood flow after forebrain ischemia in rat. J Cereb Blood Flow Metab. 2008; 28: 1275-1284. DOI: https://doi.org/10.1038/jcbfm.2008.21

Anderova M, Vorisek I, Pivonkova H, Benesova J, Vargova L, Cicanic M, et al. Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J Cereb Blood Flow Metab. 2011; 31: 894-907. DOI: https://doi.org/10.1038/jcbfm.2010.168

Hossmann KA. Experimental models for the investigation of brain ischemia. Cardiovasc Res. 1998; 39: 106-120. DOI: https://doi.org/10.1016/S0008-6363(98)00075-3

Zepeda A, Vaca L, Arias C, Sengpiel F. Reorganization of visual cortical maps after focal ischemic lesions. J Cereb Blood Flow Metab. 2003; 23: 811-820. DOI: https://doi.org/10.1097/01.WCB.0000075010.31477.1E

Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke. 1989; 20: 1037-1043. DOI: https://doi.org/10.1161/01.STR.20.8.1037

Izumi, Y., Haida, M., Hata, T., Isozumi, K., Kurita, D., & Shinohara, Y. (2002). Distribution of brain oedema in the contralateral hemisphere after cerebral infarction: repeated MRI measurement in the rat. J Clin Neurosc. 9(3), 289-293. DOI: https://doi.org/10.1054/jocn.2001.0966

Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A. Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 1990; 21: 1485-8. DOI: https://doi.org/10.1161/01.STR.21.10.1485

Reinecke S, Lutzenburg G, Hagemann G, Bruehl C, Neumann-Haefelin T, Witte OW. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci Lett. 1999; 261: 85-8. DOI: https://doi.org/10.1016/S0304-3940(99)00014-2

Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G, Molinari M. Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience. 2008; 154: 1267-1282. DOI: https://doi.org/10.1016/j.neuroscience.2008.04.024

Nudo RJ. Recovery after damage to motor cortical areas. Curr Opin Neurobiol. 1999; 9: 740-7. DOI: https://doi.org/10.1016/S0959-4388(99)00027-6

Keyvani K, Reinecke S, Abts HF, Paulus W, Witte OW. Suppresion of proteasome C2 contralateral to ischemic lesions in rat brain. Brain Res. 2000, 858, 386-392. DOI: https://doi.org/10.1016/S0006-8993(00)01978-8

Guzzetta A, Bonanni P, Biagi L, Tosetti M, Montanaro D, Guerrini R, et al. Reorganization of the somatonsensory system after early brain damage. Clin Neurophysiol. 2007; 118: 1110-1121. DOI: https://doi.org/10.1016/j.clinph.2007.02.014

Gil JL. El enigma de la diásquisis. Rev Neurol. 2001; 32: 199-200. DOI: https://doi.org/10.33588/rn.3202.2000412

Gómez-Beldarrain M, García-Moncó JC., Quintana JM, Llorens V, Rodeno E. Diaschisis and neuropsychological performance after cerebellar stroke. Eur Neurol. 1997; 37: 82-9. DOI: https://doi.org/10.1159/000117415

Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, et al. Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in Cynomolgus monkeys: Establishment of a monkey model for delayed cerebral ischemia. Exp Toxicol Pathol. 2007; 59: 9-16. DOI: https://doi.org/10.1016/j.etp.2007.02.008

Iizuka H, Sakatani K, Young W. Neural damage in the rat thalamus after cortical infarcts. Stroke 1990; 21: 790-4. DOI: https://doi.org/10.1161/01.STR.21.5.790

Reuck J, Decoo D, Lemahieu I, Strijckmans K, Goethals P, Van Maele G. Ipsilateral thalamic diaschisis after middle cerebral artery infarction. J Neurol Sci. 1995; 134: 130-5. DOI: https://doi.org/10.1016/0022-510X(95)00229-2

González-Aguado E, Martí-Fábregas J, Martí-Vilalta JL. El fenómeno de la diasquisis en la enfermedad cerebral vascular. Rev Neurol. 2000; 30: 941-5. DOI: https://doi.org/10.33588/rn.3010.99579

Henninger N, Heimann A, Kempski O. Electrophysiology and neuronal integrity following systemic arterial hypotension in a rat model of unilateral carotid artery occlusion. Brain Res. 2007; 1163: 119-129. DOI: https://doi.org/10.1016/j.brainres.2007.06.006

Sopala M, Frankiewicz T, Parsons C, Danysz W. Middle cerebral artery occlusion produces secondary, romete impairment in hippocampal plasticity of rats –involvement of N-methyl-D-aspartate receptors?. Neurosci Lett. 2000, 281, 143-6. DOI: https://doi.org/10.1016/S0304-3940(00)00829-6

Zhao LR, Mattsson B, Johansson BB. Enviromental influence on brain derived neurotrophic factor messenger RNA expression after middle cerebral artery occlusion in spontaneously hypertensive rats. Neuroscience. 2000; 97: 177-184. DOI: https://doi.org/10.1016/S0306-4522(00)00023-3

Block F, Dihne M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol. 2005; 75: 342-365. DOI: https://doi.org/10.1016/j.pneurobio.2005.03.004

Wang S, Kee N, Preston E. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp Brain Res. 2005; 165: 250-260. DOI: https://doi.org/10.1007/s00221-005-2296-8

Rousseaux M, Steinling M. Remote regional cerebral blood flow consequences of focused infarcts of the medulla, pons and cerebelum. J Nucl Med. 1999; 40: 721-9.

Arango-Dávila CA, Pimienta-Jiménez H, Escobar-Betancourt M. Depresión postisquemia cerebral: aproximación clínica y fisiopatológica. Rev Colomb Psiquiatr. 2000; 4: 321-344.

Binkofski F, Seitz RJ, Arnold S, Classen J, Benecke R, Freund, H. J. Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol. 1996; 39: 460-470. DOI: https://doi.org/10.1002/ana.410390408

Turley KR, Toledo-Pereyra LH, Kothari RU. Molecular mechanisms in the pathogenesis and treatment of acute ischemic stroke. J invest Sur. 2005; 18: 207-218. DOI: https://doi.org/10.1080/08941930591004449

Wolf H, Buslei R, Schmidt-Kastner R, Schmidt-Kastner P, Pietsch T, Wiestler O, et al. NeuN: A Useful Neuronal Marker for Diagnostic Histopathology. J Hist Cytochem. 1996; 44: 1167-1171. DOI: https://doi.org/10.1177/44.10.8813082

Lee JC, Ahn JH, Lee DH, Yan BC, Park JH, Kim IH, et al. Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res. 2013 (in press). DOI: https://doi.org/10.1016/j.brainres.2013.03.008

Morancho A, García-Bonilla L, Barceló V, Giralt D, Campos-Martorell M, Garcia S, et al. New method for focal transient cerebral ischaemia by distal compression of the middle cerebral artery. Neuropathol Appl Neurobiol. 2012; 38: 617-627. DOI: https://doi.org/10.1111/j.1365-2990.2012.01252.x

Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, Gurer G, Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004; 23: 169-74. DOI: https://doi.org/10.1016/j.brainres.2004.04.032

Zea-Longa E, Weinstein PR, Carlson S, Cummings R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91. DOI: https://doi.org/10.1161/01.STR.20.1.84

Tamura A, Nakane M, Kuroiwa T, Nagaoka T, Sano K. Imaging of remote areas after focal cerebral ischemia. Int Congr Series. 2003, 1252, 321-7. DOI: https://doi.org/10.1016/S0531-5131(03)00089-X

Knight RA, Dereski MO, Helpern JA, Ordidge RJ, Chopp M. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Stroke. 1994; 25: 1252-1261. DOI: https://doi.org/10.1161/01.STR.25.6.1252

Wegner S, Weber R, Ramos-Cabrer P, Uhlenkueken U, Sprenger C, Wiedermann D, et al. Temporal profile of T2-weighted MRI distinguisher between pannecrosis and selective neuronal death after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 2006, 26, 38-47. DOI: https://doi.org/10.1038/sj.jcbfm.9600166

Potes, L., Umbarila, J., Arango-Dávila, C. A., Munoz, B. E., & Manrique Castaño, D. (2016). Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats. Colombia Medica, 47(2), 87–93. https://doi.org/10.25100/cm.v47i2.2146

Downloads

Download data is not yet available.
Received 2015-11-05
Accepted 2016-05-19
Published 2016-06-30