Main Article Content

Authors


Background: The hallmark of tuberculosis is the granuloma, an organized cellular accumulation playing a key role in host defense against Mycobacterium tuberculosis. These structures sequester and contain mycobacterial cells preventing active disease, while long term maintenance of granulomas leads to latent disease. Clear understanding on mechanisms involved in granuloma formation and maintenance is lacking.


Objective: to monitor granuloma formation and to determine gene expression profiles induced during the granulomatous response to M. tuberculosis (H37Ra).


Methods: We used a previously characterized in vitro human model. Cellular aggregation was followed daily with microscopy and Wright staining for 5 days. Granulomas were collected at 24 h, RNA extracted and hybridized to Affymetrix human microarrays.


Results: Daily microscopic examination revealed gradual formation of granulomas in response to mycobacterial infection. Granulomatous structures persisted for 96 h, and then began to disappear.


Conclusions: Microarray analysis identified genes in the innate immune response and antigen presentation pathways activated during the in vitro granulomatous response to live mycobacterial cells, revealing very early changes in gene expression of the human granulomatous response.


WHO . Global Tuberculosis. Geneva, Switzerland: 2012.

Parrish NM, Dick JD, Bishai WR. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 1998 ;6(3): 107–12. DOI: https://doi.org/10.1016/S0966-842X(98)01216-5

Glickman MS, Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell. 2001; 104(4): 477–85. DOI: https://doi.org/10.1016/S0092-8674(01)00236-7

Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012; 12(5): 352–66. DOI: https://doi.org/10.1038/nri3211

Zhu G, Xiao H, Mohan VP, Tsen F, Salgame P, and Chan J. Gene expression in the tuberculous granuloma: analysis by laser capture microdissection and real-time PCR. Cell Microbiol. 2003; 5(7): 445–53. DOI: https://doi.org/10.1046/j.1462-5822.2003.00288.x

Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37–49. DOI: https://doi.org/10.1016/j.cell.2008.11.014

Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis granuloma - the critical battlefield in host immunity and disease. Front Immunol. 2013; 4: 98. DOI: https://doi.org/10.3389/fimmu.2013.00098

Kunkel SL, Lukacs NW, Strieter RM, Chensue SW. Animal models of granulomatous inflammation. Semin Respir Infect. 1998; 13(3): 221–8.

Davis JMC, H Lewis, J. L. Ghori, N. Herbomel, P. Ramakrishnan, L. Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002; 17(6): 693–702. DOI: https://doi.org/10.1016/S1074-7613(02)00475-2

Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, Kolattukudy PE. Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS One. 2013;8(1): e53657. DOI: https://doi.org/10.1371/journal.pone.0053657

Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol. 2004; 6(5): 423–33. DOI: https://doi.org/10.1111/j.1462-5822.2004.00371.x

Birkness KA, Guarner J, Sable SB, Tripp RA, Kellar KL, Bartlett J, et al. An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol Cell Biol. 2007; 85(2): 160–8. DOI: https://doi.org/10.1038/sj.icb.7100019

Rivero-Lezcano OM. In vitro infection of human cells with Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012; 93(2): 123–9. DOI: https://doi.org/10.1016/j.tube.2012.09.002

Li C, Hung Wong W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2001; 2(8): RESEARCH0032. DOI: https://doi.org/10.1186/gb-2001-2-8-research0032

Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002; 31(1): 19–20. DOI: https://doi.org/10.1038/ng0502-19

Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods. 2001; 25(4): 443–51. DOI: https://doi.org/10.1006/meth.2001.1266

Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol. 2001; 2(8): 569–77. DOI: https://doi.org/10.1038/35085034

Russell DG. Who puts the tubercle in tuberculosis. Nat Rev Microbiol. 2007; 5(1): 39–47. DOI: https://doi.org/10.1038/nrmicro1538

Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, et al. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 2009; 258(1): 29–37. DOI: https://doi.org/10.1016/j.cellimm.2009.03.008

Vignal C, Guerardel Y, Kremer L, Masson M, Legrand D, Mazurier J, et al. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J Immunol. 2003; 171(4): 2014–23. DOI: https://doi.org/10.4049/jimmunol.171.4.2014

Quesniaux VJ, Nicolle DM, Torres D, Kremer L, Guerardel Y, Nigou J, et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol. 2004; 172(7): 4425–34. DOI: https://doi.org/10.4049/jimmunol.172.7.4425

Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010; 8(4): 296–307. DOI: https://doi.org/10.1038/nrmicro2321

Bergeron A, Bonay M, Kambouchner M, Lecossier D, Riquet M, Soler P, et al. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J Immunol. 1997; 159(6): 3034–43. DOI: https://doi.org/10.4049/jimmunol.159.6.3034

Law K, Weiden M, Harkin T, Tchou-Wong K, Chi C, Rom WN. Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am J Respir Crit Care Med. 1996; 153(2): 799–804. DOI: https://doi.org/10.1164/ajrccm.153.2.8564135

Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K, Alvarez X, et al. Transcriptional reprogramming in nonhuman primate (Rhesus macaque) tuberculosis granulomas. PLoS One. 2010; 5(8): e12266. DOI: https://doi.org/10.1371/journal.pone.0012266

Jo EK, Park JK, Dockrell HM. Dynamics of cytokine generation in patients with active pulmonary tuberculosis. Curr Opin Infect Dis. 2003; 16(3): 205–10. DOI: https://doi.org/10.1097/00001432-200306000-00004

Sachse F, Ahlers F, Stoll W, Rudack C. Neutrophil chemokines in epithelial inflammatory processes of human tonsils. Clin Exp Immunol. 2005; 140(2): 293–300. DOI: https://doi.org/10.1111/j.1365-2249.2005.02773.x

Donninger H, Glashoff R, Haitchi HM, Syce JA, Ghildyal R, van Rensburg E, et al. Rhinovirus induction of the CXC chemokine epithelial-neutrophil activating peptide-78 in bronchial epithelium. J Infect Dis. 2003; 187(11): 1809–17. DOI: https://doi.org/10.1086/375246

Jang S, Uzelac A, Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection. J Leukoc Biol. 2008; 84(5): 1264–70. DOI: https://doi.org/10.1189/jlb.1107742

Algood HM, Lin PL, Flynn JL. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis. 2005; 41(3): S189–93. DOI: https://doi.org/10.1086/429994

Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis. 2002; 61(2): 54–8. DOI: https://doi.org/10.1136/ard.61.suppl_2.ii54

Lazarevic V, Yankura DJ, DiVito SJ, Flynn JL. Induction of Mycobacterium tuberculosis-specific primary and secondary T-cell responses in interleukin-15-deficient mice. Infect Immun. 2005; 73(5): 2910–22. DOI: https://doi.org/10.1128/IAI.73.5.2910-2922.2005

O'Kane CM, Boyle JJ, Horncastle DE, Elkington PT, Friedland JS. Monocyte-dependent fibroblast CXCL8 secretion occurs in tuberculosis and limits survival of mycobacteria within macrophages. J Immunol. 2007; 178(6): 3767–76. DOI: https://doi.org/10.4049/jimmunol.178.6.3767

Perskvist N, Long M, Stendahl O, Zheng L. Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J Immunol. 2002; 168(12): 6358–65. DOI: https://doi.org/10.4049/jimmunol.168.12.6358

Placido R, Mancino G, Amendola A, Mariani F, Vendetti S, Piacentini M, et al. Apoptosis of human monocytes/macrophages in Mycobacterium tuberculosis infection. J Pathol. 1997; 181(1): 31–8. DOI: https://doi.org/10.1002/(SICI)1096-9896(199701)181:1<31::AID-PATH722>3.0.CO;2-G

Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, et al. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 2011; 4(3): 279–87. DOI: https://doi.org/10.1038/mi.2011.3

Lieberman J. Granzyme A activates another way to die. Immunol Rev. 2010; 235(1): 93–104. DOI: https://doi.org/10.1111/j.0105-2896.2010.00902.x

Getachew Y, Stout-Delgado H, Miller BC, Thiele DL. Granzyme C supports efficient CTL-mediated killing late in primary alloimmune responses. J Immunol. 2008; 181(11): 7810–7. DOI: https://doi.org/10.4049/jimmunol.181.11.7810

Stoeckle C, Gouttefangeas C, Hammer M, Weber E, Melms A, Tolosa E. Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs. Exp Hematol. 2009; 37(2): 266–75. DOI: https://doi.org/10.1016/j.exphem.2008.10.011

Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013; 14(3): 6044–66. DOI: https://doi.org/10.3390/ijms14036044

Aydemir TB, Blanchard RK, Cousins RJ. Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci USA. 2006; 103(6): 1699–704. DOI: https://doi.org/10.1073/pnas.0510407103

Ochieng J, Chaudhuri G. Cystatin superfamily. J Health Care Poor Underserved. 2010; 21(Suppl 1): 51–70. DOI: https://doi.org/10.1353/hpu.0.0257

Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science. 2010; 327(5964): 466–9. DOI: https://doi.org/10.1126/science.1179663

Elass E, Aubry L, Masson M, Denys A, Guérardel Y, Maes E, et al. Mycobacterial lipomannan induces matrix metalloproteinase-9 expression in human macrophagic cells through a Toll-like receptor 1 (TLR1)/TLR2- and CD14-dependent mechanism. Infect Immun. 2005; 73(10): 7064–8. DOI: https://doi.org/10.1128/IAI.73.10.7064-7068.2005

Kaufmann SH. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol. 2007; 5(7): 491–504. DOI: https://doi.org/10.1038/nrmicro1688

Martinez AN, Mehra S, Kaushal D. Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis. 2013; 207(8): 1253–61. DOI: https://doi.org/10.1093/infdis/jit037

Reyes, N., Bettin, A., Reyes, I., & Geliebter, J. (2015). Microarray analysis of the in vitro granulomatous response to Mycobacterium tuberculosis H37Ra. Colombia Medica, 46(1), 26–32. https://doi.org/10.25100/cm.v46i1.1570

Downloads

Download data is not yet available.