Main Article Content


The use of instruments in clinical practice with measurement properties tested is highly recommended, in order to provide adequate assessment and measurement of outcomes.

To calculate the minimum clinically important difference (MCID) and responsiveness of the Perme Intensive Care Unit Mobility Score (Perme Score).

This retrospective, multicentric study investigated the clinimetric properties of MCID, estimated by constructing the Receiver Operating Characteristic (ROC). Maximizing sensitivity and specificity by Youden's, the ROC curve calibration was performed by the
Hosmer and Lemeshow goodness-of-fit test. Additionally, we established the responsiveness, floor and ceiling effects, internal consistency, and predictive validity of the Perme Score.

A total of 1.200 adult patient records from four mixed general intensive care units (ICUs) were included. To analyze which difference clinically reflects a relevant evolution we calculated the area under the curve (AUC) of 0.96 (95% CI: 0.95-0.98), and the optimal cut-off value of 7.0 points was established. No substantial floor (8.8%) or ceiling effects (4.9%) were observed at ICU discharge. However, a moderate floor effect was observed at ICU admission (19.3%), in contrast to a very low incidence of ceiling effect (0.6%). The Perme Score at ICU admission was associated with hospital mortality, OR 0.86 (95% CI: 0.82-0.91), and the predictive
validity for ICU stay presented a mean ratio of 0.97 (95% CI: 0.96-0.98).

Our findings support the establishment of the minimum clinically important difference and responsiveness of the Perme Score as a measure of mobility status in the ICU. 

Ricardo Kenji Nawa, Hospital Israelita Albert Einstein


Marcio Luiz Ferreira De Camillis, Hospital Moinhos de Vento


Monique Buttignol, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil, - Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho;São Paulo, SP, Brazil,


Fernanda Machado Kutchak, Universidade Vale dos Sinos, Porto Alegre, RS – Brazil. Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre, RS – Brazil.

Universidade Vale dos Sinos, Porto Alegre, RS – Brazil.

Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre, RS – Brazil.


Eder Chaves Pacheco, Universidade Vale dos Sinos, Porto Alegre, RS – Brazil.


Louise Helena Rodrigues Gonçalves, Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP – Brazil.


Leonardo Miguel Corrêa Garcia, Hospital Moinhos de Vento, Porto Alegre, RS – Brazil.


Karina Tavares Timenetsky, Hospital Israelita Albert Einstein, São Paulo, SP – Brazil.


Luiz Alberto Forgiarini Júnior, Universidade La Salle, Physiotherapy Course and Postgraduate Program in Health and Human Development, Canoas, RS – Brazil.

Nawa, R. K., De Camillis, M. L. F., Buttignol, M., Kutchak, F. M., Pacheco, E. C., Gonçalves, L. H. R., Garcia, L. M. C., Timenetsky, K. T., & Forgiarini Júnior, L. A. (2023). Clinimetric properties of the Perme Intensive Care Unit Mobility Score: A multicenter study for minimum important difference and responsiveness analysis. Colombia Medica, 54(3), e2005580. (Original work published September 25, 2023)

Parry, S. M. et al. Assessment of impairment and activity limitations in the critically ill: a systematic review of measurement instruments and their clinimetric properties. Intensive Care Med. 41, 744-762 (2015). PMid:25652888

Parry, S. M. et al. Evaluating Physical Functioning in Survivors of Critical Illness: Development of a New Continuum Measure for Acute Care. Crit. Care Med. 48, 1427-1435 (2020). PMid:32931188

Rathore, S. & George, P. Physical Function in Critical Care Tool Bridges the Waters of ICU and Post Acute Care Physical Functioning Assessments. Critical care medicine vol. 48 1532-1533 (2020). PMid:32925260

Perme, C., Nawa, R. K., Winkelman, C. & Masud, F. A tool to assess mobility status in critically ill patients: the Perme Intensive Care Unit Mobility Score. Methodist Debakey Cardiovasc. J. 10, 41-49 (2014). PMid:24932363 PMCid:PMC4051334

Nawa, R. K., Lettvin, C., Winkelman, C., Evora, P. R. B. & Perme, C. Initial interrater reliability for a novel measure of patient mobility in a cardiovascular intensive care unit. J. Crit. Care 29, 475.e1-5 (2014). PMid:24630690

Wilches Luna, E. C. et al. Perme ICU Mobility Score (Perme Score) and the ICU Mobility Scale (IMS): translation and cultural adaptation for the Spanish language. Colomb. Med. 49, 265-272 (2018). PMid:30700919 PMCid:PMC6342087

Kawaguchi, Y. M. F., Nawa, R. K., Figueiredo, T. B., Martins, L. & Pires-Neto, R. C. Perme Intensive Care Unit Mobility Score and ICU Mobility Scale: translation into Portuguese and cross-cultural adaptation for use in Brazil. J. Bras. Pneumol. 42, 429-434 (2016). PMid:28117473 PMCid:PMC5344091

Pereira, C. S., Carvalho, A. T. de, Bosco, A. D. & Forgiarini Júnior, L. A. The Perme scale score as a predictor of functional status and complications after discharge from the intensive care unit in patients undergoing liver transplantation. Rev Bras Ter Intensiva 31, 57-62 (2019). PMid:30970092 PMCid:PMC6443309

Timenetsky, K. T. et al. The Perme Mobility Index: A new concept to assess mobility level in patients with coronavirus (COVID-19) infection. PLoS One 16, e0250180 (2021). PMid:33882081 PMCid:PMC8059854

Luna, E. C. W., Perme, C. & Gastaldi, A. C. Relationship between potential barriers to early mobilization in adult patients during intensive care stay using the Perme ICU Mobility score. Can J Respir Ther 57, 148-153 (2021). PMid:34820503 PMCid:PMC8607990

Luna, E. C. W., de Oliveira, A. S., Perme, C. & Gastaldi, A. C. Spanish version of the Perme Intensive Care Unit Mobility Score: Minimal detectable change and responsiveness. Physiotherapy Research International vol. 26 Preprint at (2021). PMid:32926503

Mokkink, L. B. et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med. Res. Methodol. 10, 22 (2010). PMid:20298572 PMCid:PMC2848183

Mokkink, L. B., Prinsen, C. A. C., Bouter, L. M., Vet, H. C. W. de & Terwee, C. B. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther 20, 105-113 (2016). PMid:26786084 PMCid:PMC4900032

Schünemann, H. J. & Guyatt, G. H. Commentary-goodbye M(C)ID! Hello MID, where do you come from? Health Serv. Res. 40, 593-597 (2005). PMid:15762909 PMCid:PMC1361157

von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453-1457 (2007). PMid:18064739

Moreno, R. P. et al. SAPS 3-From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Medicine vol. 31 1345-1355 Preprint at (2005). PMid:16132892 PMCid:PMC1315315

Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22, 707-710 (1996). PMid:8844239

Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373-383 (1987). PMid:3558716

Zampieri, F. G. et al. Association of frailty with short-term outcomes, organ support and resource use in critically ill patients. Intensive Care Med. 44, 1512-1520 (2018). PMid:30105600

Team. R Core Team (2019) RA Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. References-Scientific Research Publishing.

Wyrwich, K. W., Tierney, W. M. & Wolinsky, F. D. Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J. Clin. Epidemiol. 52, 861-873 (1999). PMid:10529027

Deyo, R. A. & Centor, R. M. Assessing the responsiveness of functional scales to clinical change: an analogy to diagnostic test performance. J. Chronic Dis. 39, 897-906 (1986). PMid:2947907

Terwee, C. B. et al. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 60, 34-42 (2007). PMid:17161752

McHorney, C. A. & Tarlov, A. R. Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual. Life Res. 4, 293-307 (1995). PMid:7550178

DeVellis, R. F. Scale Development: Theory and Applications. (SAGE Publications, 2016).

Knapp, T. R. Focus on Psychometrics. Coefficient alpha: Conceptualizations and anomalies. Res. Nurs. Health 14, 457-460 (1991). PMid:1792347

Terwee, C. B. et al. Rating the methodological quality in systematic reviews of studies on measurement properties: a scoring system for the COSMIN checklist. Qual. Life Res. 21, 651-657 (2012). PMid:21732199 PMCid:PMC3323819

Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika vol. 73 13-22 Preprint at (1986).

Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Logistic regression models for multinomial and ordinal outcomes. Applied Logistic Regression Analysis. 3rd.

Tipping, C. J. et al. A systematic review of measurements of physical function in critically ill adults. Crit. Care Resusc. 14, 302-311 (2012).

Nawa, R. K. et al. Analysis of mobility level of COVID-19 patients undergoing mechanical ventilation support: A single center, retrospective cohort study. PLoS One 17, e0272373 (2022). PMid:35913973 PMCid:PMC9342786

Yen, H.-C. et al. Functional mobility effects of progressive early mobilization protocol on people with moderate-to-severe traumatic brain injury: A pre-post intervention study. NeuroRehabilitation (2022) doi:10.3233/NRE-220023. PMid:35723117

Gatty, A. et al. Effectiveness of structured early mobilization protocol on mobility status of patients in medical intensive care unit. Physiother. Theory Pract. 1-13 (2020) doi:10.1080/09593985.2020.1840683. PMid:33228448

Ceron, C. et al. The Effect of Speaking Valves on ICU Mobility of Individuals With Tracheostomy. Respir. Care 65, 144-149 (2020). PMid:31615923

Deyo, R. A., Diehr, P. & Patrick, D. L. Reproducibility and responsiveness of health status measures. Statistics and strategies for evaluation. Control. Clin. Trials 12, 142S-158S (1991). PMid:1663851

Guyatt, G., Walter, S. & Norman, G. Measuring change over time: assessing the usefulness of evaluative instruments. J. Chronic Dis. 40, 171-178 (1987). PMid:3818871

King, M. T. A point of minimal important difference (MID): a critique of terminology and methods. Expert Rev. Pharmacoecon. Outcomes Res. 11, 171-184 (2011). PMid:21476819

Beaton, D. E., Boers, M. & Wells, G. A. Many faces of the minimal clinically important difference (MCID): a literature review and directions for future research. Curr. Opin. Rheumatol. 14, 109-114 (2002). PMid:11845014

Nydahl, P. et al. The German translation of the Perme Intensive Care Unit Mobility Score and inter-rater reliability between physiotherapists and nurses. European Journal of Physiotherapy 20, 109-115 (2018).

Luna, E. C. W. et al. Perme ICU Mobility Score (Perme Score) and the ICU Mobility Scale (IMS): translation and cultural adaptation for the Spanish language. Colombia Medica 265-272 Preprint at (2018). PMid:30700919 PMCid:PMC6342087


Download data is not yet available.
Received 2023-04-04
Accepted 2023-09-21
Published 2023-12-14