Main Article Content

Authors

Background:
The use of instruments in clinical practice with measurement properties tested is highly recommended, in order to provide adequate assessment and measurement of outcomes.


Objective:
To calculate the minimum clinically important difference (MCID) and responsiveness of the Perme Intensive Care Unit Mobility Score (Perme Score).


Methods:
This retrospective, multicentric study investigated the clinimetric properties of MCID, estimated by constructing the Receiver Operating Characteristic (ROC). Maximizing sensitivity and specificity by Youden's, the ROC curve calibration was performed by the
Hosmer and Lemeshow goodness-of-fit test. Additionally, we established the responsiveness, floor and ceiling effects, internal consistency, and predictive validity of the Perme Score.


Results:
A total of 1.200 adult patient records from four mixed general intensive care units (ICUs) were included. To analyze which difference clinically reflects a relevant evolution we calculated the area under the curve (AUC) of 0.96 (95% CI: 0.95-0.98), and the optimal cut-off value of 7.0 points was established. No substantial floor (8.8%) or ceiling effects (4.9%) were observed at ICU discharge. However, a moderate floor effect was observed at ICU admission (19.3%), in contrast to a very low incidence of ceiling effect (0.6%). The Perme Score at ICU admission was associated with hospital mortality, OR 0.86 (95% CI: 0.82-0.91), and the predictive
validity for ICU stay presented a mean ratio of 0.97 (95% CI: 0.96-0.98).


Conclusions:
Our findings support the establishment of the minimum clinically important difference and responsiveness of the Perme Score as a measure of mobility status in the ICU. 

Ricardo Kenji Nawa, Hospital Israelita Albert Einstein

orcid_id14.png https://orcid.org/0000-0002-0852-7013

Marcio Luiz Ferreira De Camillis, Hospital Moinhos de Vento

orcid_id14.png https://orcid.org/0000-0001-5566-6422

Monique Buttignol, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil, - Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho;São Paulo, SP, Brazil,

orcid_id14.png https://orcid.org/0000-0002-7195-6400

Fernanda Machado Kutchak, Universidade Vale dos Sinos, Porto Alegre, RS – Brazil. Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre, RS – Brazil.

Universidade Vale dos Sinos, Porto Alegre, RS – Brazil.

Hospital Nossa Senhora da Conceição – Grupo Hospitalar Conceição, Porto Alegre, RS – Brazil.

orcid_id14.pnghttps://orcid.org/0000-0002-7195-6400

Eder Chaves Pacheco, Universidade Vale dos Sinos, Porto Alegre, RS – Brazil.

orcid_id14.png https://orcid.org/0000-0001-7367-854X

Louise Helena Rodrigues Gonçalves, Hospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP – Brazil.

orcid_id14.pnghttps://orcid.org/0000-0001-7367-854X

Leonardo Miguel Corrêa Garcia, Hospital Moinhos de Vento, Porto Alegre, RS – Brazil.

orcid_id14.png https://orcid.org/0000-0002-5730-3147

Karina Tavares Timenetsky, Hospital Israelita Albert Einstein, São Paulo, SP – Brazil.

orcid_id14.png https://orcid.org/0000-0002-4176-2445

Luiz Alberto Forgiarini Júnior, Universidade La Salle, Physiotherapy Course and Postgraduate Program in Health and Human Development, Canoas, RS – Brazil.

orcid_id14.png https://orcid.org/0000-0002-6706-2703

Parry, S. M. et al. Assessment of impairment and activity limitations in the critically ill: a systematic review of measurement instruments and their clinimetric properties. Intensive Care Med. 41, 744-762 (2015). https://doi.org/10.1007/s00134-015-3672-x PMid:25652888 DOI: https://doi.org/10.1007/s00134-015-3672-x

Parry, S. M. et al. Evaluating Physical Functioning in Survivors of Critical Illness: Development of a New Continuum Measure for Acute Care. Crit. Care Med. 48, 1427-1435 (2020). https://doi.org/10.1097/CCM.0000000000004499 PMid:32931188 DOI: https://doi.org/10.1097/CCM.0000000000004499

Rathore, S. & George, P. Physical Function in Critical Care Tool Bridges the Waters of ICU and Post Acute Care Physical Functioning Assessments. Critical care medicine vol. 48 1532-1533 (2020). https://doi.org/10.1097/CCM.0000000000004537 PMid:32925260 DOI: https://doi.org/10.1097/CCM.0000000000004537

Perme, C., Nawa, R. K., Winkelman, C. & Masud, F. A tool to assess mobility status in critically ill patients: the Perme Intensive Care Unit Mobility Score. Methodist Debakey Cardiovasc. J. 10, 41-49 (2014). https://doi.org/10.14797/mdcj-10-1-41 PMid:24932363 PMCid:PMC4051334 DOI: https://doi.org/10.14797/mdcj-10-1-41

Nawa, R. K., Lettvin, C., Winkelman, C., Evora, P. R. B. & Perme, C. Initial interrater reliability for a novel measure of patient mobility in a cardiovascular intensive care unit. J. Crit. Care 29, 475.e1-5 (2014). https://doi.org/10.1016/j.jcrc.2014.01.019 PMid:24630690 DOI: https://doi.org/10.1016/j.jcrc.2014.01.019

Wilches Luna, E. C. et al. Perme ICU Mobility Score (Perme Score) and the ICU Mobility Scale (IMS): translation and cultural adaptation for the Spanish language. Colomb. Med. 49, 265-272 (2018). https://doi.org/10.25100/cm.v49i4.4042 PMid:30700919 PMCid:PMC6342087

Kawaguchi, Y. M. F., Nawa, R. K., Figueiredo, T. B., Martins, L. & Pires-Neto, R. C. Perme Intensive Care Unit Mobility Score and ICU Mobility Scale: translation into Portuguese and cross-cultural adaptation for use in Brazil. J. Bras. Pneumol. 42, 429-434 (2016). https://doi.org/10.1590/s1806-37562015000000301 PMid:28117473 PMCid:PMC5344091 DOI: https://doi.org/10.1590/s1806-37562015000000301

Pereira, C. S., Carvalho, A. T. de, Bosco, A. D. & Forgiarini Júnior, L. A. The Perme scale score as a predictor of functional status and complications after discharge from the intensive care unit in patients undergoing liver transplantation. Rev Bras Ter Intensiva 31, 57-62 (2019). https://doi.org/10.5935/0103-507X.20190016 PMid:30970092 PMCid:PMC6443309 DOI: https://doi.org/10.5935/0103-507X.20190016

Timenetsky, K. T. et al. The Perme Mobility Index: A new concept to assess mobility level in patients with coronavirus (COVID-19) infection. PLoS One 16, e0250180 (2021). https://doi.org/10.1371/journal.pone.0250180 PMid:33882081 PMCid:PMC8059854 DOI: https://doi.org/10.1371/journal.pone.0250180

Luna, E. C. W., Perme, C. & Gastaldi, A. C. Relationship between potential barriers to early mobilization in adult patients during intensive care stay using the Perme ICU Mobility score. Can J Respir Ther 57, 148-153 (2021). https://doi.org/10.29390/cjrt-2021-018 PMid:34820503 PMCid:PMC8607990 DOI: https://doi.org/10.29390/cjrt-2021-018

Luna, E. C. W., de Oliveira, A. S., Perme, C. & Gastaldi, A. C. Spanish version of the Perme Intensive Care Unit Mobility Score: Minimal detectable change and responsiveness. Physiotherapy Research International vol. 26 Preprint at https://doi.org/10.1002/pri.1875 (2021). https://doi.org/10.1002/pri.1875 PMid:32926503 DOI: https://doi.org/10.1002/pri.1875

Mokkink, L. B. et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: a clarification of its content. BMC Med. Res. Methodol. 10, 22 (2010). https://doi.org/10.1186/1471-2288-10-22 PMid:20298572 PMCid:PMC2848183 DOI: https://doi.org/10.1186/1471-2288-10-22

Mokkink, L. B., Prinsen, C. A. C., Bouter, L. M., Vet, H. C. W. de & Terwee, C. B. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther 20, 105-113 (2016). https://doi.org/10.1590/bjpt-rbf.2014.0143 PMid:26786084 PMCid:PMC4900032 DOI: https://doi.org/10.1590/bjpt-rbf.2014.0143

Schünemann, H. J. & Guyatt, G. H. Commentary-goodbye M(C)ID! Hello MID, where do you come from? Health Serv. Res. 40, 593-597 (2005). https://doi.org/10.1111/j.1475-6773.2005.0k375.x PMid:15762909 PMCid:PMC1361157 DOI: https://doi.org/10.1111/j.1475-6773.2005.0k375.x

von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453-1457 (2007). https://doi.org/10.1016/S0140-6736(07)61602-X PMid:18064739 DOI: https://doi.org/10.1016/S0140-6736(07)61602-X

Moreno, R. P. et al. SAPS 3-From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Medicine vol. 31 1345-1355 Preprint at https://doi.org/10.1007/s00134-005-2763-5 (2005). https://doi.org/10.1007/s00134-005-2763-5 PMid:16132892 PMCid:PMC1315315 DOI: https://doi.org/10.1007/s00134-005-2763-5

Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22, 707-710 (1996). https://doi.org/10.1007/BF01709751 PMid:8844239 DOI: https://doi.org/10.1007/BF01709751

Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373-383 (1987). https://doi.org/10.1016/0021-9681(87)90171-8 PMid:3558716 DOI: https://doi.org/10.1016/0021-9681(87)90171-8

Zampieri, F. G. et al. Association of frailty with short-term outcomes, organ support and resource use in critically ill patients. Intensive Care Med. 44, 1512-1520 (2018). https://doi.org/10.1007/s00134-018-5342-2 PMid:30105600 DOI: https://doi.org/10.1007/s00134-018-5342-2

Team. R Core Team (2019) RA Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. References-Scientific Research Publishing.

Wyrwich, K. W., Tierney, W. M. & Wolinsky, F. D. Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J. Clin. Epidemiol. 52, 861-873 (1999). https://doi.org/10.1016/S0895-4356(99)00071-2 PMid:10529027 DOI: https://doi.org/10.1016/S0895-4356(99)00071-2

Deyo, R. A. & Centor, R. M. Assessing the responsiveness of functional scales to clinical change: an analogy to diagnostic test performance. J. Chronic Dis. 39, 897-906 (1986). https://doi.org/10.1016/0021-9681(86)90038-X PMid:2947907 DOI: https://doi.org/10.1016/0021-9681(86)90038-X

Terwee, C. B. et al. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 60, 34-42 (2007). https://doi.org/10.1016/j.jclinepi.2006.03.012 PMid:17161752 DOI: https://doi.org/10.1016/j.jclinepi.2006.03.012

McHorney, C. A. & Tarlov, A. R. Individual-patient monitoring in clinical practice: are available health status surveys adequate? Qual. Life Res. 4, 293-307 (1995). https://doi.org/10.1007/BF01593882 PMid:7550178 DOI: https://doi.org/10.1007/BF01593882

DeVellis, R. F. Scale Development: Theory and Applications. (SAGE Publications, 2016).

Knapp, T. R. Focus on Psychometrics. Coefficient alpha: Conceptualizations and anomalies. Res. Nurs. Health 14, 457-460 (1991). https://doi.org/10.1002/nur.4770140610 PMid:1792347 DOI: https://doi.org/10.1002/nur.4770140610

Terwee, C. B. et al. Rating the methodological quality in systematic reviews of studies on measurement properties: a scoring system for the COSMIN checklist. Qual. Life Res. 21, 651-657 (2012). https://doi.org/10.1007/s11136-011-9960-1 PMid:21732199 PMCid:PMC3323819 DOI: https://doi.org/10.1007/s11136-011-9960-1

Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. Biometrika vol. 73 13-22 Preprint at https://doi.org/10.1093/biomet/73.1.13 (1986). https://doi.org/10.1093/biomet/73.1.13 DOI: https://doi.org/10.1093/biomet/73.1.13

Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Logistic regression models for multinomial and ordinal outcomes. Applied Logistic Regression Analysis. 3rd.

Tipping, C. J. et al. A systematic review of measurements of physical function in critically ill adults. Crit. Care Resusc. 14, 302-311 (2012). DOI: https://doi.org/10.1016/S1441-2772(23)01772-6

Nawa, R. K. et al. Analysis of mobility level of COVID-19 patients undergoing mechanical ventilation support: A single center, retrospective cohort study. PLoS One 17, e0272373 (2022). https://doi.org/10.1371/journal.pone.0272373 PMid:35913973 PMCid:PMC9342786 DOI: https://doi.org/10.1371/journal.pone.0272373

Yen, H.-C. et al. Functional mobility effects of progressive early mobilization protocol on people with moderate-to-severe traumatic brain injury: A pre-post intervention study. NeuroRehabilitation (2022) doi:10.3233/NRE-220023. https://doi.org/10.3233/NRE-220023 PMid:35723117 DOI: https://doi.org/10.3233/NRE-220023

Gatty, A. et al. Effectiveness of structured early mobilization protocol on mobility status of patients in medical intensive care unit. Physiother. Theory Pract. 1-13 (2020) doi:10.1080/09593985.2020.1840683. https://doi.org/10.1080/09593985.2020.1840683 PMid:33228448 DOI: https://doi.org/10.1080/09593985.2020.1840683

Ceron, C. et al. The Effect of Speaking Valves on ICU Mobility of Individuals With Tracheostomy. Respir. Care 65, 144-149 (2020). https://doi.org/10.4187/respcare.06768 PMid:31615923 DOI: https://doi.org/10.4187/respcare.06768

Deyo, R. A., Diehr, P. & Patrick, D. L. Reproducibility and responsiveness of health status measures. Statistics and strategies for evaluation. Control. Clin. Trials 12, 142S-158S (1991). https://doi.org/10.1016/S0197-2456(05)80019-4 PMid:1663851 DOI: https://doi.org/10.1016/S0197-2456(05)80019-4

Guyatt, G., Walter, S. & Norman, G. Measuring change over time: assessing the usefulness of evaluative instruments. J. Chronic Dis. 40, 171-178 (1987). https://doi.org/10.1016/0021-9681(87)90069-5 PMid:3818871 DOI: https://doi.org/10.1016/0021-9681(87)90069-5

King, M. T. A point of minimal important difference (MID): a critique of terminology and methods. Expert Rev. Pharmacoecon. Outcomes Res. 11, 171-184 (2011). https://doi.org/10.1586/erp.11.9 PMid:21476819 DOI: https://doi.org/10.1586/erp.11.9

Beaton, D. E., Boers, M. & Wells, G. A. Many faces of the minimal clinically important difference (MCID): a literature review and directions for future research. Curr. Opin. Rheumatol. 14, 109-114 (2002). https://doi.org/10.1097/00002281-200203000-00006 PMid:11845014 DOI: https://doi.org/10.1097/00002281-200203000-00006

Nydahl, P. et al. The German translation of the Perme Intensive Care Unit Mobility Score and inter-rater reliability between physiotherapists and nurses. European Journal of Physiotherapy 20, 109-115 (2018). https://doi.org/10.1080/21679169.2017.1401660 DOI: https://doi.org/10.1080/21679169.2017.1401660

Luna, E. C. W. et al. Perme ICU Mobility Score (Perme Score) and the ICU Mobility Scale (IMS): translation and cultural adaptation for the Spanish language. Colombia Medica 265-272 Preprint at https://doi.org/10.25100/cm.v49i4.4042 (2018). https://doi.org/10.25100/cm.v49i4.4042 PMid:30700919 PMCid:PMC6342087 DOI: https://doi.org/10.25100/cm.v49i4.4042

Nawa, R. K., De Camillis, M. L. F., Buttignol, M., Kutchak, F. M., Pacheco, E. C., Gonçalves, L. H. R., Garcia, L. M. C., Timenetsky, K. T., & Forgiarini Júnior, L. A. (2023). Clinimetric properties of the Perme Intensive Care Unit Mobility Score: A multicenter study for minimum important difference and responsiveness analysis. Colombia Medica, 54(3), e2005580. https://doi.org/10.25100/cm.v54i3.5580

Downloads

Download data is not yet available.