Genotoxicity and cytotoxicity of sevoflurane in two human cell lines in vitro with ionizing radiation
Main Article Content
Objective: To determine the in vitro toxicity of different concentrations of sevoflurane in cells exposed to X-ray.
Methods: The genotoxic effects of sevofluorane were studied by means of the micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes. Subsequently, its cytotoxic effects on PNT2 (normal prostate) cells was determined using the cell viability test (MTT) and compared with those induced by different doses of X-rays.
Results: A dose- and time-dependent cytotoxic effect of sevofluorane on PNT2 cells was determined (p> 0.001) and a dose-dependent genotoxic effect of sevofluorane was established (p> 0.001). Hovewer, at volumes lower than 30 μL of sevofluorane at 100%, a non-toxic effect on PNT2 cells was shown.
Conclusion: Sevofluorane demonstrates a genotoxic capacity as determined in vitro by micronucleus test in cytokinesis-blocked cells of irradiated human lymphocytes.
- anaesthesia
- genotoxicity
- micronucleus
- radiation effects
- sevofluorane
Michel F, Constantin JM. Sevoflurane inside and outside the operating room. Expert Opin Pharmacother. 2009;10:861–887. DOI: https://doi.org/10.1517/14656560902798752
Goa KL, Noble S, Spencer CM. Sevoflurane in paediatric anaesthesia: a review. Paediatr Drugs. 1999;1:127–153. DOI: https://doi.org/10.2165/00128072-199901020-00005
Karabiyik L, Sardas S, Polat U, Kocaba SNA, Karakaya AE. Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo using the comet assay. Mutat Res. 2001;492:99–107. DOI: https://doi.org/10.1016/S1383-5718(01)00159-0
Migita T, Mukaida L, Kobayashi M, Hamada H, Kawamoto M. The severity of sevoflurane-induces malignant hyperthermia. Acta Anaesthesiol Scand. 2012;56:351–356. DOI: https://doi.org/10.1111/j.1399-6576.2011.02573.x
Bienengraeter MW, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Cardio protection by colatile anesthetics. Vascul Pharmacol. 2005;42:243–252. DOI: https://doi.org/10.1016/j.vph.2005.02.005
Brozovic G, Orsolic N, Rozgaj R, Kasuba V, Knezevic F, Knezevic AH, et al. DNA damage and repair after exposure to sevoflurane in vivo, evaluated in Swiss albino mice by the alkaline comet assay and micronucleus test. J Appl Genet. 2010;51:79–86. DOI: https://doi.org/10.1007/BF03195714
Wong CH, Liu TZ, Chye SM, Lu FJ, Liu YC, Lin ZC, et al. Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorpho nuclear neutrophils. Food Chem Toxicol. 2006;44:1399–1407. DOI: https://doi.org/10.1016/j.fct.2006.03.004
Alcaraz M, Acevedo C, Castillo J, Benavente-García O, Armero D, Vicente V, et al. Liposoluble antioxidants provide an effective radioprotective barrier. Br J Radiol. 2009;82:605–609. DOI: https://doi.org/10.1259/bjr/30930369
Alcaraz M, Armero D, Martínez-Beneyto Y, Castillo J, Benavente-García O, Fernández H, et al. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels. Dentomaxillofac Radiol. 2011;40:310–314. DOI: https://doi.org/10.1259/dmfr/95408354
Castillo J, Benavente-García O, Lorente J, Alcaraz M, Redondo A, Ortuño A, et al. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (procyanidins) from grape seeds (Vitis vinifera): Comparative study versus other phenolic and organic compounds. J Agr Food Chem. 2000;48:1738–1745. DOI: https://doi.org/10.1021/jf990665o
Castillo J, Benavente-García O, Del Baño MJ, Lorente J, Alcaraz M, Dato MJ. Radioprotective effects against chromosomal damage induced in human lymphocytes by gamma-rays as a function of polymerization grade of grape seed extracts. J Med Food. 2001;4:117–123. DOI: https://doi.org/10.1089/109662001300341770
Del Baño MJ, Castillo J, Benavente-García O, Lorente J, Martín-Gil R, Acevedo C, et al. Radioprotective-antigenic effects of Rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. J Agric Food Chem. 2006;54:2064–2068. DOI: https://doi.org/10.1021/jf0581574
Fenech M, Morley A. Measurement of micronuclei in lymphocytes. Mutation Res. 1985;147:29–36. DOI: https://doi.org/10.1016/0165-1161(85)90015-9
Castillo J, Alcaraz M, Benavente-García O, Preedy VR, Watson RR, editors. Antioxidant and radioprotective effects of olive leaf estract. Olives and olive in health and disease precention. Oxford: Academic Press; 2010. pp. 951–958. DOI: https://doi.org/10.1016/B978-0-12-374420-3.00102-9
Benavente-García O, Castillo J, Lorente J, Alcaraz M. Radioprotective effects in vivo of phenolics extracted from Olea europea L. leaves against X- rays-induced chromosomal damage: comparative study versus several flavonoids and sulphur-containing compounds. J Med Food. 2002;5:125–135. DOI: https://doi.org/10.1089/10966200260398152
Sánchez-Campillo M, Gabaldón JA, Castillo J, Benavente-García O, Del Baño MJ, Alcaraz M, et al. Rosmarinic acid, a photoprotective agent against UV and other ionizing radiations. Food Chem Toxicol. 2009;47:386–392. DOI: https://doi.org/10.1016/j.fct.2008.11.026
Serna A, Alcaraz M, Navarro JL, Acevedo C, Vicente V, Canteras M. Biological dosimetry and Bayesian analysis of chromosomal damage in thyroid cancer patients. Radiat Prot Dosimetry. 2007;129:373–380. DOI: https://doi.org/10.1093/rpd/ncm444
Alcaraz M, Gómez-Moraga A, Dato MJ, Navarro JL, Canteras M. Efecto genotóxico inducido por la exposición a rayos X durante exploraciones complejas de radiodiagnóstico médico. Oncología. 2002;25:159–168.
Navarro JL, Alcaraz M, Gómez-Moraga A, Vicente V, Canteras M. Absence of chromosomic and genotoxic damage from the radiation dose administered in scintigraphic examinations. Rev Esp Med Nucl. 2004;23:174–182. DOI: https://doi.org/10.1157/13061692
Robbiano L, Mereto E, Moraudo AM, Pastor P, Brambilla G. Increased frequency of micronucleated kdney cells in rats expressed to halogenates anesthesics. Mutat Res. 1998;413:1–6. DOI: https://doi.org/10.1016/S1383-5718(97)00187-3
Lüleci N, Sakarya M, Topçu I, Lüleci E, Erinçler T, Solak M. Effects of sevofluorane on cell division and levels of sister chromatid exchange. Anasthesiol Intensivmed Notfallmed Schmerzther. 2005;40:213–216. DOI: https://doi.org/10.1055/s-2005-861138
Wiesner G, Hoerauf K, Salioegendofer K, Sodozyriski P, Hart M, Reudiger HW. High level but not low-level occupational exposure to inhaled anesthetics is associated with genotoxicity in the micronucleus assay. Anesth Analg. 2001;92:118–121. DOI: https://doi.org/10.1097/00000539-200101000-00023
Szyfter K, Szulc R, Mikstacki A, Stachecki I, Rydzanicz M, Jaloszynski P. Genotoxicity of inhalation anaesthetics: DNA lesions generated by sevoflurane in vitro and in vivo. J Appl Genet. 2004;45:369–374.
Wiesner G, Schiewe-Langgartner F, Lindner R, Gruber M. Increased formation of sister chromatid exchanges, but not of micronuclei, in anaesthetists exposed to low levels of sevoflurane. Anaesthesia. 2008;63:861–864. DOI: https://doi.org/10.1111/j.1365-2044.2008.05498.x
Vral A, Fenech M, Thierens H. The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis. 2011;26:11–17. DOI: https://doi.org/10.1093/mutage/geq078
Downloads
- José Manuel Sánchez-Villalobos, Alfredo Serna-Berna, Juan Salinas-Ramos, Pedro Pablo Escolar-Pérez, Emma Martínez-Alonso, Daniel Gyingiri Achel, Miguel Alcaraz, Volumetric modulated arc radiosurgery for brain metastases from breast cancer: A single-center study , Colombia Medica: Vol. 52 No. 3 (2021)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copy rights of the articles published in Colombia Médica belong to the Universidad del Valle. The contents of the articles that appear in the Journal are exclusively the responsibility of the authors and do not necessarily reflect the opinions of the Editorial Committee of the Journal. It is allowed to reproduce the material published in Colombia Médica without prior authorization for non-commercial use